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1. Introduction 

 
As modern industrial systems become larger and 

more complex, the importance of system modeling has 
been consistently emphasized and accordingly various 
system modeling methods have been suggested. 
Particularly, since existing systems are not always 
sufficiently understood to apply quantitative modeling 
methods, not only studies on quantitative modeling 
methods but also qualitative modeling methods have 
been conducted actively.  

Among various kinds of qualitative modeling 
methods, multilevel flow modeling (MFM) which 
represents a system’s goals and functions with flows of 
mass, energy and their interactions [1] can be 
considered as one of the major qualitative modeling 
methods. MFM can model various industrial systems 
without the reliance on detailed knowledge or domain 
specific assumptions. Moreover, by accompanying 
reasoning algorithm with MFM, it is able to conduct 
qualitative reasoning regarding event causes and 
consequences not only fast but also precisely. 

With these advantages, MFM has been applied for 
various purposes [2-5]. However, current MFM method 
has a limitation that it is not able to consider the 
dynamic characteristics of the modelled system, and 
accordingly, MFM’s applicability has been restricted 
since the concept of time is important in explaining the 
characteristics of many systems.  

Therefore, in this paper, the time-related concepts 
including time-to-detect (TTD) and time-to-effect 
(TTE) were adopted from the system failure model, in 
order to enhance MFM to be capable of considering 
dynamic characteristics. Additionally, the method for 
probabilistic reasoning based on these time-related 
concepts is also introduced.  

 
2. Preliminaries 

 
2.1 Multilevel Flow Modeling 

 
MFM is a qualitative modeling method for general 

industrial processes, which represents the goals and 
functions of the system with mass, energy flows and 
their interactions; and represents the system’s structure 
hierarchically with means-end and part-whole 
abstractions [1]. Although MFM models are simple, it is 
intuitive and capable of consisting many fundamental 
characteristics of the system. Fig. 1 represents the 
various symbols which are used during MFM modeling. 

 

 
 
Fig. 1. Various symbols which are used during MFM 
modeling [1] 

 
As MFM based models are established with 

considering energy conservation and mass conservation 
laws, not only the whole system can be easily and 
precisely modeled but also it is able to conduct 
qualitative reasoning which is a process that revealing 
the causes and consequences of the observed events [6]. 

The main characteristics of MFM can be summarized 
as follows. 

 
(1) System representation with flows and interactions: 

as MFM models the functions of target system with 
elementary flows, MFM can be applied easily and 
accurately without detailed knowledge and excessive 
domain-specific assumptions. 

(2) Qualitativeness: a system can be modeled with 
MFM without detailed quantitative relations. 
Accordingly, the application of MFM would be 
inappropriate if quantitative information is required.  

(3) Model-based reasoning: once a model is 
established, the model is not able to consider 
additionally acquired information on system 
configurations unless the model is updated.   

(4) Snap-shot evidence and results: it is not able to 
consider the dynamic characteristics of the systems 
since current MFM methods do not involve time-related 
concepts. 
 

Among these characteristics of MFM, the fourth 
characteristic (i.e. snap-shot evidence and results) is 
regarded as one of the main disadvantages of MFM, 
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since time-related evidences are often utilized 
importantly during the cause and consequence reasoning 
processes. If MFM becomes able to consider dynamic 
characteristics of system, it is expected that more 
detailed and delicate cause and consequence reasoning 
would be possible.   
 
2.2 System Failure Model 
 

A System failure model (tentative name) was 
introduced as one of the main concepts of functional 
fault analysis (FFA), which is a systematic design 
methodology for the integration of a system health 
management (SHM) to the early design stage of 
complex systems such as spacecraft. With system failure 
model, it is able to consider the effect propagation due 
to various failure modes and its timing along the 
modeled physical paths [7]. The system failure model is 
represented in Fig. 2. 

 

 
 
Fig. 2. Schematic of the system failure model and its timing 
definitions [7] 

 
However, the fore-mentioned system failure model 

was introduced only for spacecraft cases, and therefore 
the modified system failure model was suggested by 
applying several modifications to make the model more 
general. The modified system failure model is 
represented in Fig. 3.  
 

 
 
Fig. 3. Schematic of the modified system failure model and its 
timing definitions 

 
Timing definitions included in the modified system 

failure model are as follows. 

 
(1) Time-to-effect (TTE): the time from the ‘onset of 

failure’ to the point when its effects are potentially 
detectable. 

(2) Time-to-detect (TTD): the time from the ‘onset of 
failure’ to the confirmation of fault existence.  

(3) Time-to-diagnosis: the time from the ‘onset of 
failure’ to the identification of the fault (e.g., fault 
location, fault type, etc.). 

(4) Time-to-mitigation: the time from the ‘onset of 
failure’ to the complete prevention of the critical system 
failure. 

(5) Time-to-criticality: the time from the ‘onset of 
failure’ to the critical system failure. 
 
3. Application of the Time-related Concepts to MFM 

 
3.1 Modified definitions of the TTD and TTE concepts 
from an MFM perspective 

 
Since the reasoning processes are conducted when 

one or more functions are not in normal states, which 
include failed states, it is necessary to modify the timing 
definitions from an MFM perspective. 

Firstly, among the upper five timing definitions, only 
TTD and TTE are associated to the MFM, since the 
others are related to the diagnosis and mitigation 
processes which are out of the MFM’s scope. 

To redefine TTD and TTE in MFM perspective, it is 
convenient to consider the simple system with only two 
connected functions and the corresponding 
instrumentation systems. 

If a state change in function A occurs and is detected 
by its corresponding instrumentation system, TTD for 
function A (tA) can be defined as the time from the 
‘state change in function A’ to the ‘detection of the state 
change in function A’. If a state change in function A 
occurs and it induces a state change in function B, TTE 
between function A and function B (tAB) can be defined 
as the time from the ‘state change in function A’ to the 
‘state change in function B’. These are represented in 
Fig. 4. 

 

 
 
Fig. 4. Diagram of the simple two-function system with 
corresponding TTDs and TTE 
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These concepts can be easily expanded to multi-
function systems with the assumption that the effect 
propagates one-by-one from the antecedent function to 
the subsequent function.  

Substantially, due to the uncertainties and many kinds 
of factors, it is natural to represent the TTD and TTE 
values as distributions instead of fixed constants. In this 
case, it is now able to conduct enhanced probabilistic 
reasoning, rather than conventional deterministic 
reasoning.   

 
3.2 Estimation of TTD and TTE as distribution 

 
In order to utilize TTD and TTE profiles for 

enhanced reasoning processes, it is necessary to 
estimate these values with proper level of uncertainties. 
If TTD and TTE are represented as distributions, TTD 
and TTE estimation problems can be considered as 
distribution estimation problems.  

In the case of TTD, it is expected that the estimation 
of TTD distribution is relatively easy, since most of the 
applied instrumentation systems are both theoretically 
and empirically well-defined. However, in the case of 
TTE, it is expected that the estimation of TTE 
distribution is much harder since it may vary due to 
many complicated factors such as input conditions or 
state definitions. Furthermore, analytical methods are 
inappropriate to be considered since MFM is not likely 
to be applied for the well-understood systems.  

Instead, if the time of the event occurrences can be 
measured, it is able to consider the empirical 
approaches for the TTE distribution estimation (e.g. 
estimation of the likelihood from the samples). 
Representatively, two kinds of approaches can be 
utilized for the estimation. 

 
3.2.1 Estimation of the TTE distributions based on 
Bayesian update 
 

Bayesian update (i.e. Bayesian inference) is the 
statistical inference method based on Bayes’ theorem, 
which can be used to update the probability for a 
hypothesis with observed evidences.  

Equation for the Bayesian update can be represented 
as follows. 

 
( | )( | ) ( )

( )
P DataP Data P

P Data
θθ θ= ⋅                     (1) 

 
Where θ is the parameter of the data point’s 

distribution. 
To apply Bayesian update, it is essential to define the 

forms of the prior distribution and likelihood, and it 
highly affects the update results. The beta distribution is 
one of the widely used distributions since it is able to 
approximate many other distributions. 

However, since most of the commonly used 
distributions are inappropriate for approximating 
multimodal distributions (i.e. distributions with multiple 
peaks), Bayesian update is also difficult to deal with 
multimodal hypotheses. Many studies have been 
conducted to solve the problem of multimodality within 
the Bayesian update, but they are still ongoing [8]. 
 
3.2.2 Estimation of the TTE distributions based on non-
Bayesian probability distribution approximation 
algorithm 

 
As alternatives of Bayesian update, studies on non-

Bayesian probability distribution approximation 
algorithms also have been actively conducted to 
consider the multimodal distributions [9]. Although 
none of them show the matchless performance, many 
non-Bayesian probability distribution approximation 
algorithms show better performance on considering 
multimodal distributions. 

Since non-Bayesian probability distribution 
approximation algorithms are relatively data-inefficient, 
it would be proper to consider the mixed approach 
rather than choosing only one method for the TTE 
distribution estimation (e.g. application of Bayesian 
update when the amount of data is small, and then 
application of another method when the amount of data 
is sufficient).  

 
3.3 Probabilistic reasoning based on the TTD and TTE 
distributions 

 
To conduct probabilistic cause and consequence 

reasoning based on TTD and TTE distributions, it is 
necessary to consider the summation of the distributions. 
If the distributions are independent to each other, the 
summation of the distributions can be solved through 
convolution operation. 

For the continuously distributed random variables X 
and Y with probability density functions f and g 
respectively, convolution operation to get the 
distribution of the sum Z=X+Y is as follows. 

 

( ) ( )( ) ( ) ( )h z f g z f z t g t dt
∞

−∞
= ∗ = −∫            (2) 

 
In section 3.3.1 and 3.3.2, probabilistic cause 

reasoning and consequence reasoning processes are 
described.  

 
3.3.1 Probabilistic cause reasoning 
 

To simplify the problem, assume that there are two 
event paths which can affect both function A and 
function B. Since these event paths include different 
functions, the results of serial convolution operations 
would also be different.  
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Through the serial convolution operations of TTD 
and TTE distributions, it is able to obtain the probability 
distributions that represents when will the state of A, 
and state of B changes for both event paths. 
Accordingly, it is able to calculate the time gap 
distributions between function A and function B for 
both event paths. 

When the state changes in function A and function B 
are both observed and the time gap between these 
changes is measured, then it is able to calculate the 
probabilities of event occurrence due to two event paths. 
If the observed time gap is denoted as tm, and time-gap 
distribution for event path 1 and 2 are denoted as pd1 
and pd2 respectively, then the probabilities of event 
occurrence due to each event path (P1 and P2) can be 
obtained as follows. 
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Fig. 5. Schematic of probabilistic cause reasoning 

 
For example, if the actual time gap is measured and 

corresponding probability values of pd1 and pd2 are 0.2 
and 0.05 respectively, it is able to infer that the 
probability of the event occurrence due to event path 1 
is 80% (0.2/0.2+0.05), and the probability of the event 
occurrence due to event path 2 is 20% (0.05/0.2+0.05).  

For the cases with n event paths, the upper equations 
can be generalized as follows to get the event 
occurrence probability due to event path x. 
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( )

x m
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                                   (5) 

 
3.2.1 Probabilistic consequence reasoning 
 

To simplify the problem, assume that the state change 
in function A is observed and it eventually induces the 
state change in function B. Through the serial 
convolution operations of TTD and TTE distributions, it 
is able to obtain the probability distributions that 
represents when will the state of B changes, and when 
will the state change in B detected.    

If new observations on state changes in functions 
between function A and function B are obtained, then 
the prediction about when will the state of B changes 
can be conducted with reduced uncertainty.  

 
4. Conclusion 

 
In this paper, the time-related concepts including 

TTD and TTE were adopted from the modified system 
failure model, which is a generalized version of the 
system failure model. Moreover, enhanced probabilistic 
reasoning processes based on the estimated TTD and 
TTE distributions are briefly introduced. 

Based on the concepts introduced in this paper, it is 
expected that the MFM’s applicability will be increased, 
especially for the systems with sparse instrumentation 
systems. 

For future studies, additional case studies should be 
conducted in order to further examine the applicability 
to real-world systems. In addition, since the accurate 
and precise estimation of TTD and TTE distributions 
are extremely important for the probabilistic reasoning 
processes, continuous monitoring on probability 
distribution estimation methods is necessary. 
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