
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-18, 2018 

 

 

Estimation of RV Water Level Using Deep Neural Networks under Severe Accident 

Circumstances in NPPs 

 
Young Do Koo a, Ye Ji An a, and Man Gyun Na a* 

aDepartment of Nuclear Engineering, Chosun Univ., 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea 
*Corresponding author: magyna@chosun.ac.kr 

 

1. Introduction 

 
Acquiring the instrumentation signals from nuclear 

power plants (NPPs) is essential to assure the safety of 

the reactor under the normal operation condition or the 

accident circumstances. These instrumentation signals 

such as temperature, pressure, flow rate, H2 

concentration, and water level from the reactor, 

pressurizer, steam generator, containment, and so on are 

considered as safety-critical key parameters for the 

facilities and systems in NPPs. Therefore, the operators 

can properly control the plants and take necessary 

actions depending on the situations by diagnosing NPP 

states using these kinds of signals. 

Among these signals, the reactor vessel (RV) water 

level is considered as one of the safety-critical 

parameters to keep the integrity of the primary system 

of NPPs. To be specific, the RV water level, which is 

directly related to determining the cooling capability for 

the nuclear fuel and preventing core uncovery, has a 

very important role to keep the safety of the primary 

system and even the whole NPP. In case of optimized 

power reactor (OPR) 1000, the RV water level is 

generally measured by heated junction thermocouple 

(HJTC) in the accidents [1]. 

However, the RV water level including other safety-

related parameters can not be accurately measured due 

to the instrument inability or its uncertain integrity 

under the severe accident circumstances in NPPs. In this 

study, thus, the RV water level was estimated by 

applying other simulated signal and predicted signal 

data of NPPs to deep neural networks (DNNs) [2,3] 

under such circumstances in which the integrity of 

major instruments may not be ensured. 

The DNN is generally with the supervised learning 

algorithms and accordingly, the data known as the 

actual or targeted values are needed. In this study, 

modular accident analysis program (MAAP) [4] was 

used to gain the simulation data for the assumed loss of 

coolant accidents (LOCAs) which may occur in NPPs. 

 

2. A Deep Learning Method 

 

The computing power is being enhanced owing to the 

continuously upgraded computer hardware and 

techniques and thus, well-known deep learning methods 

[3] has shown their outstanding performance for a 

variety of fields. As a deep learning method, the DNN 

used in this study can be defined as a multilayer neural 

networks with effective learning algorithms. In addition, 

the DNN can be considered as a straightforward 

network due to utilized activation function in its hidden 

layers and weight propagation flow than other deep 

learning methods such as recurrent neural network 

(RNN) and long-short term memory (LSTM) [3]. 

 

2.1 Deep Neural Networks 
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Fig. 1. Deep neural networks 

 

The DNN is an artificial neural network with multiple 

hidden layers and nodes (refer to Fig. 1) and is 

occasionally called feedforward neural networks 

(FFNNs) or deep feedforward networks (DFNs) [3] due 

to the particular output flow between the nodes in each 

layer. In other words, the outputs, calculated from the 

each node in the input layer using input values x (refer 

to Fig. 2), are transferred forward and updated through 

the hidden layers, and finally the estimated values ŷ  

are computed in the output layer. 

The backpropagation (or backprop) [5,6] and 

gradient descent [3,6] algorithms are commonly used 

for learning and optimization of the DNN method.  

Specifically, the error between the estimated value 

through feedforward and the targeted value is 

transferred backward from the output layer to the hidden 

layers. After then, the gradient is calculated and finally 

the weight wij is able to be updated using the backprop 

and gradient descent algorithms (refer to Fig. 3). It is 

noted that the gradient descent algorithm is a technique 

to approach the global minima, which is the lowest 

point of the cost function expressed in Fig. 4, by 

iteratively calculating the gradient of the cost function at 

the each current point. 
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Fig. 2. An illustration of single artificial neuron. 
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Fig. 3. Training and optimization procedure of the DNN. 

 

The hypothesis of the DNN and the cost function for 

convex function are generally defined as Eqs. (1) and 

(2). 
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where ˆ ( )i iy  Wx  is the i-th estimated value and iy  is 

the i-th targeted value. 

 

 
 

Fig. 4. Global minima in the cost function. 

 

2.2 Optimization of DNN 

 

It is known that the aforementioned DNN method can 

be more powerful by applying more data and making its 

hidden layers deeper. However, the DNN with an 

excessively deep structure can be vulnerable to the 

vanishing gradient and the overfitting problem [7]. 

 

 
 

Fig. 5. Genetic algorithm process. 

 

Therefore, the number of the hidden layers and nodes, 

as parts of the hyperparameters for the optimized 

performance of the DNN, was determined using another 

optimization technique, genetic algorithm (GA) [8,9] in 

this study. 

Briefly, the GA employed in this study is a technique 

artificially modelling an evolutionary process of 

organisms by the natural evolution mechanisms such as 

selection, crossover, and mutation. Plus, the fitness 

function (refer to Eq. (3)) is needed to evaluate how fit 

the chromosomes are by assigning the scores to each 

population in GA. The GA process is described in Fig. 5. 
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where 1  and 2 are weights for RMS and maximum 

errors for the training data ( tE  and  max tE  )  and the 

verification data ( vE  and max vE  ) sets, respectively. 

 

2.3 Employed DNN 

 

Notwithstanding several techniques such as rectified 

linear unit (ReLU) function, dropout [10], and so on to 

solve the aforementioned vanishing gradient and 

overfitting problems, the initial hyperparameters of the 

DNN can be variable according to the subject. 

Thus, a part of applied options for the DNN is shown 

in Table I. The number of the hidden layers and nodes 

was selected using the GA and the bipolar sigmoid 

function (defined as Eq. (4)) was used as the activation 

function of the DNN owing to the better performance 

than others’ in this study. 
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Table I: Applied hyperparameters for the DNN 

Hyperparameters Application 

No. of hidden layers Selected by the GA 

No. of hidden nodes Selected by the GA 

Activation function Bipolar sigmoid 

Cost function 
Mean squared error 

(MSE) 

 

3. Applied Data and Estimation Performance 

 

3.1 Data Component 

 

The MAAP [4] was used to acquire the data applied 

to the DNN with the backprop and the gradient descent 

algorithms by simulating some of the various LOCAs. 

The assumed LOCAs were at three break positions (hot-

leg, cold-leg, and steam generator tube (SGT)) and the 

break sizes were divided into small breaks and large 

breaks in each position. 

These data from the MAAP code consist of simulated 

instrumentation signals for the various NPP parameters, 

numerically expressed. The applicable parameters to 

estimate the RV water level in the simulation data at 

each break position are predicted LOCA break size, 

containment pressure, and so on. 

Although the predicted LOCA break size is 

considered easily non-recognizable under the actual 

accident circumstances, it was regarded as a signal to 

estimate RV water level in this study since the quite 

good prediction performances were shown in the past 

studies to predict the LOCA break size using the 

artificial intelligence methods [11]-[13]. 

 

3.2 Estimation Performance of DNN 

 

The estimation result of the RV water level utilizing 

the proposed DNN model is expressed in Table II. The 

estimation performances for each data set, which is 

divided for literally ‘training’ and ‘test’, are expressed 

as root mean square error (RMSE). Moreover, to 

compare with the performance, the result of a previous 

study using the same signals applied to a machine 

learning method [1] is shown in Table III. According to 

Tables II and III, each method has outstanding 

performance for the RV water level estimation. 

However, the proposed DNN model has a slightly better 

performance for the test data in most cases. 

Table II: Performance of the RV water level estimation 

using the DNN 

Break 

size 

Break 

position 

Training 

data 

Test 

data 

RMSE (m) RMSE (m) 

Small 

Hot-leg 0.21 0.30 

Cold-leg 0.16 0.18 

SGT 0.21 0.19 

Large 

Hot-leg 0.07 0.04 

Cold-leg 0.17 0.38 

SGT 0.29 0.41 

 

Table III: Performance of the RV water level estimation 

using the CFNN 

Break 

size 

Break 

position 

Training 

data 

Test 

data 

RMSE (m) RMSE (m) 

Small 

Hot-leg 0.10 0.32 

Cold-leg 0.14 0.19 

SGT 0.29 0.22 

Large 

Hot-leg 0.03 0.07 

Cold-leg 0.09 0.14 

SGT 0.32 0.50 

 

Fig. 6 is a graph indicating the estimation 

performance of the RV water level for the test data in 

case of small break LOCA at the cold-leg using the 

DNN. It is considered that the targeted RV water level 

is well tracked by the estimated RV water level. 
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Fig. 6. Estimation of the RV water level for the test data at 

the cold-leg (small break LOCA). 

 

4. Conclusions 

 

In an effort to provide the supporting information to 

NPP operators, this study on the estimation of the RV 

water level using the DNN under the severe accident 

circumstances, when the integrity of the instruments can 

not be ensured, was carried out. The assumed LOCAs, 

originated in hot-leg, cold-leg, and steam generator tube, 

were simulated using the MAAP code to acquire the 

data for the RV water level estimation. These accident 

simulation data consist of the numerically expressed 

behaviors of the several signals. 

The applied signals to the proposed DNN model were 

the predicted LOCA break size and containment 

pressure. The outstanding estimation performance for 

the RV water level of the DNN has been shown in spite 

of only two signals applied. Therefore, the DNN model 

can be considered as a method to accurately estimate the 

RV water level employing other signals under the severe 

accident circumstances. 

Furthermore, although it is known that the proper 

hyperparameter setting, known as a golden rule, has yet 

to be established, the DNN with the optimized hidden 

layers and nodes, selected by the GA in this study, has 

been slightly better than the machine learning method 

[1]. 

Consequently, it is expected that the result of this 

study can be a case study to estimate the key parameters 

using the DNN in NPPs in the future. 
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