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1. Introduction 

 
Radiation portal monitors (RPM) have been deployed 

at nation’s borders to screen individuals, vehicles or 

cargos at borders or security facilities to thwart 

smuggling of illicit radiological source and materials for 

nuclear weapons. The utilization of RPMs is not limited 

to detecting radioactive sources. Depending on which 

technology integrated with RPMs, diverse functions can 

be implemented RPMs. The various applications have 

been developed in the direction of convenient to 

operators such as radioisotope identification[1-4] and 

localization and tracking of radioactive sources[5-7]. 

This paper is focused on a technique to localize 

radioactive source using a machine learning algorithm. 

 

2. Methods and Results 

 

2.1 Support Vector Machine 

 

SVM is an classification learning tool developed by 

Vladimir Vapnik[8]. This algorithm has been developed 

theoretically and applied in not only data mining 

problems but pattern recognition problems.  

SVM is an alternative machine learning method to 

polynomial, radial basis function and multi-layer 

perceptron classifiers. SVM is basically an extension of 

neural network and linear classifier. General neural 

network method is solving optimization problem with 

non-convex and non-constraint minimization problem. 

However, SMV is solving optimization problem with 

quadratic programing with inequality constraints.  

There are linear separable data extracted from 2 

classes(true and not true) on N-dimensional space. The 

hyper planes dividing classes can be represented as 

1 1 2 2 0N Nw x w x w x b                  (1) 

where, 
nw is normal vector, 

nx is points and b is a 

distance from origin to hyper-plane.  

There are a number of hyper planes that distinguishing 

true from not true classes. Each of them is utilized as a 

classifier. To choose the best classifier that classifying 

classes optimally, the concept of margin is utilized. The 

margin of the classifier can be defined as the width of the 

plane when the plane for width is reached any point while 

the width is widened gradually in 2 vertical directions of 

the plane. The margin can be formulated with the 

distance between a plane and a point.  
Td w A B w                                 (2) 

where, w is normal vector and A is a point.  

When largest margin is found, reached points are called 

support vector and the hyper plane divides the margin in 

half is called optimal separating hyper plane. 

Support vector machine is a learning method for finding 

support vector. 

 

 

Fig. 1. Schematics of the margin, optimal hyper plane and 

support vectors 

 

2.2 Radioactive Source Localizing RPM 

 

To estimate the position of radioactive source, a set of 

NaI(TI) scintillation detector which has a volume of 

4416 in3 are utilized. Totally, 4 detectors are installed 

at the RPM frame. A region of interest (ROI) is set 

equivalent to the cross sectional size of containers, which 

satisfies ISO standard. Positions of detectors are 

determined as tri-sectional points of ROI. After then, we 

defines 9 position areas. The size of area is concerning 

the number of training samples. The number of the areas 

can be enlarged if the number of samples are enough. 

Following figure shows a schematic of RPM structure 

with detailed dimension and concept of radioactive 

source localizing. 

 

 

Fig. 2. A schematic of RPM system 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-18, 2018 

 

 
Using the measured quantities from these detector, a 

machine that localizes radioactive source will be trained 

by support vector machine. To train the machine, 

detector measurements should be necessary. To simulate 

detector signals, MCNP6[9] is used. Fig. 3 is a 3D 

modeling of the RPM system achieved using the 

MCNPX Visual Editor. 

 

Fig. 3 3D modeling of RPM structure in MCNP simulation 

 

2.3 Training & Test 

 

Training and test data have been generated by monte 

carlo simulations. Co-60 is utilized as source. Training 

samples are achieved by simulations with regularly 

distributed source data for all sections. Totally, 2250 

samples (250 samples per section) are utilized as training 

data. For test samples, 450 simulation results (50 data per 

section) with randomly distributed source data are 

utilized for all sections. To confirm the localization 

performance correctly, test samples are generated as 

follows. Firstly, generate a random source distribution 

for a grid. Secondly, make source distributions for all 

section by matching generated data on each section.  

 

3. Simulation result 

 

To confirm the performance of radioactive source 

localizing RPM, a support vector machine was 

implemented in MATLAB environments. As mentioned 

above, 250 samples per sections were utilized for 

training, and 50 data per sections were used for test. Fig. 

4 shows test results in forms of confusion matrix. 

  

 

Fig. 4. Simulation result. 

4. Conclusions 

 

By simulation study, the possibility to implement a 

machine learning based radioactive source localizing 

RPM has been verified. Using support vector machine, 

we confirms that it is possible to achieved accuracy over 

than 90 % in ideal. Now we are fabricating the RPM 

system. After the fabrication, we will confirm the 

performance of the RPM with real experimental data.  
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