

A Comparison of Human Reliability Analysis Methods for Post-Initiators

Jooyoung Park, Awwal Mohammed Arigi, Jonghyun Kim

Chosun University

Human Engineering and Risk Analysis (HERA) Lab.

2. HRA methods

3. Selected human failure events

4. Comparison of HRA methods

5. Conclusion

1.1 Motivation

► What is human reliability analysis (HRA)?

- A method for evaluating human errors and providing human error probabilities for application in Probabilistic safety assessment (PSA)
- The main purpose of HRA in the context of the PSA is to identify, analyze and quantify all human failure events (HFEs) represented in the logic structure of the PSA, before and during the accident, which contributes to plant risk as defined in the PSA.

1.1 Motivation

Challenges of HRA

- The field of HRA has been considered as one of the areas with high uncertainty in the PSA, because it has several challenges;
 - 1) data scarcity for predicting human behavior
 - 2) limited representation of the cognitive aspects of human performance,
 - 3) <u>Significant differences in HRA results from different HRA analysts with the same</u> <u>method</u>
- Up to date, there has not been an universally accepted or unified HRA method for the estimation of HEPs.
 - Only a few HRA methods, such as Technique for human error-rate prediction (THERP), Accident sequence evaluation program (ASEP), Human cognitive reliability (HCR), Cause based decision tree (CBDT), and Standardized plant analysis risk HRA (SPAR-H) have been applied in different industries, plants, and units.
 - ➢ Korea → THERP, ASEP and K-HRA
 - ➢ U.S. → THERP, ASEP, CBDT, HCR, and SPAR-H

1.1 Motivation

Comparison studies for HRA methods

- Evaluation of various HRA methods regarding the respective strengths, limitations, and quantification characteristics
 - NUREG-1842, "Evaluation of human reliability analysis methods against good practices", U.S. NRC, 2006.
 - NEA/CSNI/R(2015)1, "Establishing the appropriate attributes in current human reliability assessment techniques for nuclear safety", OECD/NEA, 2015.
- Studies with comparison of human error probabilities on the selected HRA methods

	Mohammadfam, I., M. Movafagh, and S. Bashirian	Hogenboom, I. and A.S. Kristensen	Heo, E.M., et al.		
Objective	Selection of the most	suitable method for application to	different fields		
Approach		Comparison of HEPs			
Application field	Nursing practice	Sluice complex	Small Modular Reactor		
HRA methods	CREAM and SPAR-H	THERP, CREAM and SPAR-H	THERP and NARA		

- Even though most HRA methods have been developed for use in the nuclear field, only a \rightarrow few comparison studies of human error probabilities were conducted on the events in NPPs.
- Existing researches may not explicitly provide why the human error probabilities estimated \rightarrow from different HRA methods are different and what makes them different.

1.2 Objective

Purpose of this presentation

- A comparison of human reliability analysis methods for post-initiators
 - Comparing the HEPs of HRA methods based on events in NPPs (Post-initiators)
 - Understanding how the quantification approaches are different depending on HRA methods
 ** Post-initiators* : Actions in response to disturbance by operators after an initiating event

2. HRA methods

2. HRA methods

ab.

2.1 Calculation of HEPs in general HRA methods

* Performance Shaping Factor (PSF): any factor that influences human performance such as experience, workload, task complexity, etc.

2.2 HRA methods

Introduction to selected HRA methods

	ASEP CBDT/HCR+THERP SPAR-H		SPAR-H	K-HRA
Institute (Document)	U.S. NRC (NUREG/CR-4772)	EPRI (EPRI TR-100259) and U.S. NRC (NUREG-1278)	U.S. NRC (NUREG/CR-6883)	KAERI (KAERI/TR-2961/2005)
Characteristics	 Simplified version of THERP 	 Commination of CBDT, HCR and THERP 	Easy to useEmploys a beta distribution	 Based on THERP and ASEP method
Reason for selection	 Widely applied method at the beginning of domestic NPPs 	 Widely used for domestic NPPs (applied for Barakah NPPs) 	 The most recently developed HRA method by U.S. NRC 	• The most likely HRA method for subsequent utility use in Korea

No	PSA 과제명	PSA성격	수행기관	보고서 발행연도	분석 방법
1	고리3,4 및 영광1,2	운전원전 PSA	KOPEC	1992	HCR/THERP
2	영광3,4	설계원전 PSA	KAERI	1993	ASEP/THERP
3	월성2,3,4	설계원전 PSA	KAERI	1997	ASEP/THERP
4	울진3,4	설계원전 PSA	KAERI	1997	ASEP/THERP
5	KNGR	설계원전 PSA	KOPEC	1999	THERP
6	영광5,6	설계원전 PSA	KAERI	2001	ASEP/THERP
7	영광5,6 (정지/저출력)	설계원전 PSA	KAERI	2001	THERP
8	<mark>울</mark> 진5,6	설계원전 PSA	KEPRI	2002	ASEP/THERP

- ASEP: Accident sequence evaluation program
- <u>CBDT/HCR+THERP</u>: Cause based decision tree method / Human cognitive reliability + Technique for human error rate prediction
- SPAR-H: Standard Plant Analysis Risk HRA
- K-HRA: Korean standard HRA

2. HRA methods

R HERA Lab. Human Engineeing & Risk Analysis

2.2 HRA methods

Quantification approach (Diagnosis HEPs)

	ASEP	CBDT/HCR+THERP (CBDT/HCR)	SPAR-H	K-HRA
Diagnosis HEPs	• Estimating HEPs by THERP time curve (i.e., time reliability correlation curve)	 Using CBDT and HCR HCR (by HCR time curve) and CBDT (by 8 error mechanisms with decision trees on the basis of PSFs) Determination of final HEP as the higher value 	• Basic diagnosis HEP : 1.0E-2 • 8 SPAR-H PSFs • Estimation of HEPs $HEP = BHEP \cdot \prod_{1}^{8} PSF multiplier_i$ $HEP = \frac{BHEP \cdot \prod_{1}^{8} PSF multiplier_i}{BHEP \cdot \prod_{1}^{8} (PSF multiplier_i - 1) + 1}$	• Estimating basic HEPs by THERP curve, then adjusting it by 5 K-HRA PSFs

2. HRA methods

HERA Lab. Human Engineeing & Risk Analysis

12

2.2 HRA methods

Quantification approach (Execution HEPs)

	ASEP	CBDT/HCR+THERP (THERP)		SPAR-H		K-ŀ	IRA
Execution HEPs	 Decomposing operator's task Estimating HEPs of sub-tasks based on stress level and task type PSFs Summation of all the estimated HEPs of sub-tasks 	 Using THERP Decomposing operator's task Selecting basic HEPs of sub- tasks based on THERP data Multiplying PSFs (stress level, task type and operator experience) Summation of all the estimated HEPs of sub-tasks 	• Bi 1. • 8 • Es $HEP = \frac{1}{E}$	asic execution H OE-3 SPAR-H PSFs stimation of HEPs BHEP $\cdot \prod_{1}^{8} PSF$ multiplier BHEP $\cdot \prod_{1}^{8} PSF$ multiplier	HEP : 5 7 1 1 1) + 1	 Decomposition operator Estimatin sub-tasks stress lev type 	osing s task g HEPs of s based on rel and task
/	Sub task 1 → HEPsub-task 1 (or Bo	as ic HEP sub-task 1× PSF modifier sub-task 1)	No.	Task type	Stro	ess level	HEPs
	Sub task 2 \rightarrow HEPsub-task 2 (or Bo	as ic HEP sub-task 2× PSF modifier sub-task 2)	1	Step-by-Step	Mode	rately high	0.02
lask	0	0 0	2	Dynamic	Mode	rately high	0.05
	0	0	3	Step-by-Step	Extre	mely high	0.05
	\therefore Execution HEP = \sum	HEP _{sub-task} i	4	Dynamic	Extre	mely high	0.25
	< Decomposition a	approach>	<a< td=""><td>n example of H</td><td>HEPs fo</td><td>or sub-tasks</td><td>(ASEP)></td></a<>	n example of H	HEPs fo	or sub-tasks	(ASEP)>

3. Selected human failure events

3. Selected human failure events

► 7 HFEs

- Reflecting conditions with time and PSF condition
 - Time condition: Extensive time, nominal time, urgent time and extremely urgent time

(assumed from THERP and K-HRA)

- PSF condition: Favorable and unfavorable
- Standing for main post-initiators in OPR1000 type of NPPs

	Time					Available	PSFs					
HFE No.	condition (Available time for task)	PSF condition	Description	Location (Actor)	Scenarios	time for task	Stress	Experience/ Training	Task complexity	Procedure level	Decision burden	
1	Extensive time	Favorable	Operator fails to isolate ADVs of faulted SG.	MCR	SGTR	360	Moderately high	High	Nominal	High	Low	
2	(>60)	Unfavorable	Operator fails to perform F&B operation within 2.5 hr (Late).	MCR	Transient	150	Moderately high	Low	High	Nominal	High	
3	Nominal time	Favorable	Operator fails to start AAC DG- 01E and connect to 4.16KV bus.	MCR	LOOP	60	Moderately high	High	Nominal	High	Low	
4	(>30 and <=60)	Unfavorable	Operator fail to manually open ADVs in local (with local hand pump).	LOCAL	Transient	60	Extremely high	Low	High	Low	High	
5	Urgent time	Favorable	Operator fails to generate SIAS manually in the Medium LOCA.	MCR	MBLOCA	20	Extremely high	High	Nominal	High	Nominal	
6	(>10 and <=30)	Unfavorable	Operator fails to initiate RCS agressive cooldown and depressurization for LPSI within	MCR	SBLOCA	23	Extremely high	Low	High	Low	High	
7	Extremely urgent time (<=10)	Unfavorable	Operator fails to perform F&B operation within 10 min (ATWS).	MCR	ATWS	10	Extremely high	Low	High	Nominal	High	

RHERA

4.1 Comparison of diagnosis HEPs

Results of HRAs on 7 HFEs

4.1 Comparison of diagnosis HEPs

Finding #1

 CBDT/HCR has a tendency to make relatively higher diagnosis HEPs.

Human Engineeing & Risk Analysis

HEPs by CBDT (dominant to PSFs)

ab

4.1 Comparison of diagnosis HEPs

Finding #2

 When available time for diagnosis is over 40min, diagnosis HEPs by HCR curve decrease more steeply than THERP curve.

Human Engineeing & Risk Analysis

– THERP curve

> Available time for diagnosis

• HCR

- HCR curve

- $p_{c} = Prob (T_{r} > T) = 1 \Phi \left[\frac{ln (T/T_{1/2})}{\sigma} \right]$
- > Available time for diagnosis (T)
- Median response time (T1/2)

Standard deviation according to diagnosis type 1, 2 & 3 suggested by HCR Legnermel PWR HI Type CP3

ab

4.1 Comparison of diagnosis HEPs

► Finding #2

• When available time for diagnosis is over 40min, diagnosis HEPs by HCR curve decrease more steeply than THERP curve.

Human Engineeing & Risk Analysis

RHERA

4.1 Comparison of diagnosis HEPs

Finding #3

– ASEP and HCR

•

(<=10)

 Diagnosis HEPs of K-HRA, SPAR-H and CBDT are sensitive to the PSF condition, while ASEP and HCR are not sensitive to it.

Diagnosis

HEPs

Increase

- Sensitive HRA methods to PSF condition
 - CBDT, SPAR-H and K-HRA

	Time condition	PSF condition	HFE No.	CBDT	SPAR-H	K-HRA	_
	Extensive time	Favorable	HFE 1	3.30E-03	5.00E-05	2.16E-05	НЕР
	(>60)	Unfavorable	HFE 2	1.90E-02	4.00E-03	4.50E-03	НЕР
	Nominal time	Favorable	HFE 3	3.30E-03	5.00E-05	9.90E-05	НЕР
	(>30 and <=60)	Unfavorable	HFE 4	5.90E-02	3.40E-01	8.50E-02	НЕР
	Urgent time	Favorable	HFE 5	3.00E-03	1.30E-02	2.88E-03	НЕР
	(>10 and <=30)	Unfavorable	HFE 6	5.90E-02	8.30E-01	1.00E+00	НЕР
1000	Extremely urgent time (<=10)	Unfavorable	HFE 7	1.90E-02	5.10E-01	1.00E+00	нер

1.00E+00

RHERA Lab.

Human Engineeing & Risk Analysis

Not-sensitive HRA methods to PSF condition

4.2 Comparison of execution HEPs

- Results of HRAs on 7 HFEs
 - ASEP > K-HRA > THERP > SPAR-H

4.2 Comparison of execution HEPs

Finding #4

- ASEP, THERP and K-HRA have similar pattern of execution HEPs. However, these assume different basic HEPs, PSF levels and values on sub-tasks.
- Common point
 - Based on THERP method
 - Same approach to estimating execution HEPs (Decomposition approach: Task \rightarrow sub-tasks)

ASEP THERP K-HRA The number HFE No. Task type Stress level Adjusted PSF Adjusted Adjusted of sub-tasks BHEP BHEP BHEP HEP ASEP HEP K-HRA HEP THERP multipliers Moderately HFE 1 2.00.E-02 2.00.E-02 1.70E-03 2 3.40.E-03 1.00.E-02 1.00.E-02 Step 1 high Moderately HFE 3 Step 2 2.00.E-02 4.00.E-02 1.70E-03 2 6.80.E-03 1.00.E-02 2.00.E-02 high

Task

Condition with same PSF levels Different number of sub-tasks

$\therefore Execution HEP = \sum_{i} HEP_{sub-task i}$

Sub task 1

Sub task 2

0

0

0

► HEPsub-task 1 (01' Basic HEPsub-task 1× PSF modifiersub-task 1)

 \rightarrow HEP sub-task 2 (or Basic HEP sub-task 2× PSF modifier sub-task 2)

0

0

Ο

ab Human Engineeing & Risk Analysis

4.2 Comparison of execution HEPs

► Finding #4

 ASEP, THERP and K-HRA have similar pattern of execution HEPs. However, these assume different basic HEPs, PSF levels and values on sub-tasks.

- Different point
 - Each method assumes different basic HEPs, PSF levels and their values on sub-tasks.

Time	PSF				The number			THERP		
condition	condition	HFE No.	Task type Stress level of sub-tasks ASEP		ASEP	BHEP	PSF multipliers	Final execution HEPs	K-HRA	
Extensive	Favorable	HFE 1	Step	Moderately high	1	2.00.E-02	1.70E-03	2	3.40.E-03	1.00.E-02
(>60)	Unfavorable	HFE 2	Dynamic	Moderately high	2	1.00.E-01	1.70E-03	5	1.70.E-02	6.00.E-02
Nominal time	Favorable	HFE 3	Step	Moderately high	2	4.00.E-02	1.70E-03	2	6.80.E-03	2.00.E-02
(>30 and <=60)	Unfavorable	HFE 4	Dynamic	Extremely high	1	2.50.E-01	2.60E-03	-	2.50.E-01	2.50.E-01
Urgent time	Favorable	HFE 5	Step	Extremely high	1	5.00.E-02	1.70E-03	5	8.50.E-03	5.00.E-02
(>10 and				Extremely		7505.04	1 705 00		7505.04	23

CONTRACTOR OF CO

ab

4.2 Comparison of execution HEPs

Finding #5

- SPAR-H has a tendency to estimate relatively lower execution HEPs than ASEP, THERP and K-HRA.
 - SPAR-H assumes lower basic HEPs (i.e., 1.0e-3) than the other HRA methods.

- Available time for execution is not dominant to estimating execution HEPs by ASEP, THERP and K-HRA, while SPAR-H considers available time for execution as a PSF.
- SPAR-H does not classify the task into sub-tasks like ASEP, THERP and K-HRA.

		Basi (A	c HEPs SEP)	Bas (T	ic HEP: HERP)	s Bas (SF	ic HEPs PAR-H)	s Availa	ble								B	asic HEP (K-HRA)	S
			AS	SEP	TH	IERP		time of l	осг			SPAR-H						K-HRA	
HFE No.	Task type	Stress level	внер	Adjusted HEP	внер	Adjusted HEP	внер	Available time	Stress/ stressors	Experience /training	Complexity	PSFs Ergonomics /HSI	Procedures	Fitness for duty	Work processes	PSF influences	Adjusted HEP	внер	Adjusted HEP
HFE 1	Step	Moderately high	2.00.E-02	2.00.E-02	1.70E-03	3.40.E-03	1.00.E-03	Time available is >= 50x the time (0.01)	High (2)	High (0.5)	Nominal (1)	Nominal (1)	High (1)	Nominal (1)	Nominal (1)	0.010	1.00E-05	1.00.E-02	1.00.E-02
HFE 2	Dynamic	Moderately high	5.00.E-02	1.00.E-01	1.70E-03	1.70.E-02	1.00.E-03	Time available >= 5x the time (0.1)	High (2)	Low (3)	High (2)	Nominal (1)	Nominal (1)	Nominal (1)	Nominal (1)	1.200	1.20E-03	3.00.E-02	6.00.E-02
HFE 3	Step	Moderately high	2.00.E-02	4.00.E-02	1.70E-03	6.80.E-03	1.00.E-03	Time available >= 5x the time (0.1)	High (2)	High (0.5)	Nominal (1)	Nominal (1)	High (1)	Nominal (1)	Nominal (1)	0.100	1.00E-04	1.00.E-02	2.00.E-02

RHER

4.3 Comparison of final HEPs

Results of HRAs on 7 HFEs

1.00.E+00 1.00.E-01	Extensive Extensive Nominal Nominal Urgent Urgent Extremely time time time time time time urgent (HFE 1) (HFE 2) (HFE 3) (HFE 4) (HFE 5) (HFE 6) time (HFE 7)	• Order of – <u>SP</u>	differences be <mark>AR-H</mark> > CBDT/	tween the min. / <u>HCR+THERP</u> >	. and max. final • K-HRA > <mark>ASE</mark>
illid a 1.00.E-05		→ ASEP → CBDT/HCR+THERP		Minimum Final HEP	Maximum Final HEP
g 1.00.E-03			ASEP	2.2e-2	9.0e-1
Щ 1.00.Е-04			CBDT/HCR +THERP	6.7e-3	1.0e+1
100 E 05	•		SPAR-H	6.0e-5	9.6e-1
ailable time	[Available time for task]	Available time	K-HRA	1.0e-2	1.0e+1

► Finding #6

• Final HEPs of SPAR-H show the biggest difference between the final HEPs of minimum and maximum, while those of ASEP have the least one.

5. Conclusion

5. Conclusion

Summary

- A comparison of human reliability analysis methods for post-initiators
 - Comparing the HEPs of HRA methods based on events in NPPs (Post-initiators)
 - Understanding how the quantification approaches are different depending on HRA methods
- Contents

• K-HRA

Conclusion

- The result of this study could be used as reference data to compare the human error probabilities from four HRA methods.
- It could also aid to understand why the human error probabilities estimated from four HRA methods are different and what makes them different.
- It is expected to contribute to overcoming the uncertainties and limitations of HRA by deriving acceptable values for the HRA results and select the proper method based on its intended use of application.

ab

Human Engineeing & Risk Analysis

Thank you !

2.1 Human Reliability Analysis (HRA)

Types of Human failure events (HFEs)

- Pre-initiators
 - Contributors to unavailability of systems (latent error)
 - Mis-calibration and failure to restore after test and maintenance
 - Ex) value in wrong configuration after test or maintenance in TMI accident

- Human-induced initiators
 - Actions leading to initiating event
 - Not typically found in PSA model, but implied in the initiating event frequency
- Post-initiators
 - Actions in response to disturbance by plant staff after an initiating event
 - Ex) Performing procedure, opening valves, and operating pumps by operators in MCR, etc.

2.2 ASEP

► What is ASEP ?

- Accident Sequence Evaluation Program (ASEP)
 - Developed by U.S. NRC (NUREG/CR-4772)
 - Simplification of Technique for human error-rate prediction (THERP)
 - Guidance for quantification of pre- and post- initiating events
 - Made to enable analysts at reasonable cost, with minimum support and guidance from experts in HRA
- Technique for Human Error Rate Prediction (THERP)
 - Developed by U.S. NRC (NUREG-1278)
 - Applied in WASH1400 which is the first PSA report
 - Probably used more than any other HRA technique because it offers a lot of data
 - identifies, models, and quantifies human failure events (HFEs) in a PSA
 - Does not provide enough guidance for how to handle a wider set of PSFs
 - Needs for HRA expertise with resource intensive and time consuming

2.2 ASEP

Diagnosis HEPs

- Diagnosis HEP is estimated by operator's available time for diagnosis.
 - Operator's available time for diagnosis = T(sw)-T(m)-T(d)
 - > T(sw): total system time window associated with disturbance
 - > T(m): manipulation (execution) time
 - > T(1/2): median response (diagnosis) time / ANSI/ANS-58.8-1994 ("Time response design criteria for

safety-related operator actions")

 \succ *T*(d): delay time

st Time window: time available to complete the action before plant condition become unacceptable

• Time Reliability Correlation (TRC);

2.2 ASEP

Execution HEPs

No.	Task type	Stress level	Basic HEPs				
1	Step-by-Step	Moderately high	0.02				
2	Dynamic	Moderately high	0.05				
3	Step-by-Step	Extremely high	0.05				
4	Dynamic	Extremely high	0.25				
<an asep="" basic="" example="" hep="" in="" of=""></an>							

No.	Task type	Stress level	Recovery failure prob.
1	Step-by-Step	Moderately high	0.2
2	Dynamic	Moderately high	0.5
3	Step-by-Step	Extremely high	0.5
4	Dynamic	Extremely high	0.5
<re< td=""><td>covery failure pr</td><td>obabilities on stress a</td><td>and task type></td></re<>	covery failure pr	obabilities on stress a	and task type>

2.3 CBDT/HCR+THERP

► What is CBDT/HCR+THERP ?

- EPRI methods
 - HCR (Human Cognitive Reliability) and CBDT (Cause-Based Decision Tree) developed by EPRI (EPRI TR-100259) with <u>THERP method</u>

R HERA Lab. Human Engineeing & Risk Analysis

2.3 CBDT/HCR+THERP

Diagnosis HEPs

- HCR (Human Cognitive Reliability)
 - Estimating non-response probability for post-initiating events
 - Simulator data from Operator Reliability Experiments (ORE) project by EPRI
 - ORE project aims to collect and analyze data on operating crew responses from <u>full-scale nuclear power</u> <u>plant control room simulators.</u>
- If operator's available time is long, accuracy and estimated probabilities are become lowered.
- An example of time Response Curve (TRC);

$$p_{c} = Prob \ (T_{r} > T) = 1 - \Phi \left[\frac{ln (T/T_{1/2})}{\sigma} \right]$$

- T_r : the time of response
- T : available time window for cognitive response
- $T_{1/2}$: the median response time
- σ : logarithmic standard deviation of normalized time
- 유형 1: 알람이나 감시중인 변수 값의 변화와 같은 Cue를 운전원이 인지하고 즉각적으 로 반응하는 형태 (예, 밸브가 열리는 것과 같은 변화에 대한 운전원의 반응)
- 유형 2: Cue를 인지하였으나 해당 직무가 특정 값에 도달해야 운전원이 직무를 수행할 수 있는 형태 (예, 온도나 압력이 어느 값을 초과하였을 때에 대한 운전원의 반응)
 - 유형 3: Cue를 인지하였으나 해당 직무가 Critical value에 도달하기 전에 직무를 수행 해야 하는 형태 (온도나 압력이 어떤 값에 도달하기 전에 취해야 하는 운전원의 반응)

Human Engineeing & Risk Analysis

2.3 CBDT/HCR+THERP

Diagnosis HEPs

- **CBDT** (Cause-Based Decision Tree) ٠
 - Estimates diagnosis HEPs _
 - Originally developed by EPRI to address 1) when HCR/ORE produces very low probability values

and 2) extrapolation of HCR/ORE TRC could be extremely optimistic

Failure Mode 1: Failures of the Plant Information-Operator Interface

Four mechanisms are identified for this failure mode:

p_ca

p_cb.

₽_CC.

٥_cd.

The required data are physically not available to the control room operators.

he data are available, but are not attended to.

The data are available, but are misread or miscommunicated.

The available information is misleading.

<An example of decision tree>

Failure Mode 2: Failure in the Procedure-Crew Interface

Given that the existence of a possible cue state has been recognized, four ways have been identified in which the crew may fail to reach the correct interpretation (for Type CP HIs, "correct interpretation" means execute an action or proceed to the next appropriate instruction as contingent on the cue state):

The relevant step in the procedure is skipped.

An error is made in interpreting the instructions.

An error is made in interpreting the diagnostic logic (this is a (P_Cg• subset of p_cf, but is treated separately for convenience).

The crew decides to deliberately violate the procedure.

- Recovery failure probability (Positive recovery effect) ٠
 - Self review: 1.0e-1
 - Extra crew: 5.0e-1 or 1.0e-1
 - STA review: 1.0e-1
 - Shift change: 5.0e-1 or 1.0e-1

Error probability of each error mechanism × Recovery failure probability Diagnosis HEP =

R HERA Lab. Human Engineeing & Risk Analysis

2.3 CBDT/HCR+THERP

Execution HEPs

• Technique for human error-rate prediction (THERP)

 $\therefore Execution HEP = \sum (Basic HEP_{sub-task i} \times PSF modifier_{sub-task i} \times Recovery failure_{sub-task i})$

Location	Basic HEP	Description	References
MCR	1.7E-3	Omission per item of instruction when using a step-by-step procedure.	Table 20-7 Item ref. # 1
		Select wrong control on a panel from an array of similar-appearing controls which are part of a well-defined mimic layout.	Table 20-12 Item ref. # 4
LOCAL	2.6E-3	Estimated probabilities of errors in recalling oral instruction items not written down – Oral instructions are detailed.	Table 20-8a Item ref. # 1
		Locally operated valves.	Table 20-13 Item ref. # 1

<An example of basic HEP from THERP data>

Human Engineeing & Risk Analysis

2.3 CBDT/HCR+THERP

Execution HEPs

No.

Technique for human error-rate prediction (THERP)

R HERA Lab. Human Engineeing & Risk Analysis

2.4 SPAR-H

What is SPAR-H ?

- Standard Plant Analysis Risk HRA (SPAR-H) is developed by U.S. NRC (NUREG/CR-6883)
- In addressing uncertainty, error factors were not used, and the use of a lognormal distribution was not assumed (SPAR-H employs a beta distribution, which can mimic lognormal distribution.).

Diagnosis and execution HEPs

- Calculation methods of diagnosis and execution HEPs are same.
- It assumes basic HEP, and adjusts it by PSFs
 - Basic HEP: 1.0E-2 (Diagnosis BHEP) / 1.0E-3 (Execution BHEP)
 - 8 SPAR-H PSFs : Available time, Stress and stressors, Experience and training, Complexity, Ergonomics, Procedures, Fitness for duty, Work processes

$$HEP = BHEP \cdot \prod_{1}^{8} PSF \ multiplier_i$$

$$HEP = \frac{BHEP \cdot \prod_{i=1}^{8} PSF \ multiplier_{i}}{BHEP \cdot \prod_{i=1}^{8} (PSF \ multiplier_{i} - 1) + 1}$$

SPAR-H PSFs	SPAR-H PSF Levels	SPAR-H Multipliers	
Available	Inadequate Time	P(failure) = 1.0	
Time	Time available = time required	10	
	Nominal time	1	
	Time available≥5 x time required	.1	
	Time available > 50 x time required	0.01	
Stress/ Stressors	Extreme	5	
	High	2	
	Nominal	1	
Complexity	Highly complex	5	
	Moderately complex	2	
	Nominal	1	

<An example of SPAR-H PSFs>

2.5 K-HRA

What is K-HRA ?

- Korean standard HRA (K-HRA) is developed by KAERI (KAERI/TR-2961/2005)
- Based on THERP and ASEP method
- Focusing on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts

2.5 K-HRA

Execution HEPs

 \therefore Execution HEP = $\sum (Basic HEP_{sub task i} \times Recovery failure_{sub task i})$

•							
자어서겨	ㅅㅌ레ㅅ 스즈	기본 오류	0 7 6 7	THERP 단위 직무			
TH'6'T	드르네드 이 한	확률(mean)	포시 간시	HEP 분포 (median)			
Simple	Low	0.002	3				
Response	Optimum /	0.001	3				
	Moderately High	0.001					
	Very high /	0.002	3				
	Extremely High	0.003					
	Low	0.01	3	0.001 - 0.01			
	Optimum	0.005	3	0.0005 - 0.005			
Step-by-Step	Moderately High	0.01	3	0.001 - 0.01			
	Very high	0.02	3				
	Extremely High	0.05	5	0.0025 0.025			
	Low	-	5	0.001 - 0.01			
	Optimum	0.01	5	0.0005 - 0.005			
Dynamic	Moderately High	0.03	5	0.0025 - 0.025			
	Very high	0.08	5				
	Extremely High	0.25	3	0.25			

<Basic HEPs on task type and stress level>

<Decision tree for determining recovery failure prob.>

3,2e-02

41

HEP:

Nominal Diagnosis Model Use Upper Bound if: C (a) the event is not C covered in training, OR C pra op) the event is cover acticed except in in erators for becomin	ed but not itial training of ig licensed,	OR	(c) the talk-thro ◯ all operators kn associated with	ugh and interview ow the pattern of s the event,	s show that not stimuli
Use Lower Bound (a) the event is a well-r TMI-2 incident), and the practiced the event in th requalification exercises	ecognized classic operators have e simulator 5,	(e.g., AN	(b ID op st pr) the talk-through perators have a go imulus patterns an ocedures to follow	and interviews ind od verbal recognit id know what to do v.	licate that all the ion of the relevant o or which written
Use Nominal HEP (a) the only practice of the event is in simulator regualification exercises and all operators have had this experience, OR I lower bound apply,						
Nominal Diagnosis Model (THERP Table 20-3)	Time	EF	Median	Mean	UB	LB
	1	10	1	1.0	1	1
	10	10	0.1	0.3	1	0.01

UB UB Attention of the 0.001 0.0004 iel dia 1.00000 0.000001 0.3806800 10 100 Time T (Minuton) Click on the Graph to zoom in

Time	EF	Median	Mean	UB	LB
1	10	1	1.0	1	1
10	10	0.1	0.3	1	0.01
20	10	0.01	0.03	0.1	0.001
30	10	0.001	0.003	0.01	0.0001
60	30	0.0001	0.0008	0.003	3.33E-06
1500	30	0.00001	0.00008	0.0003	3.33E-07
Actual Time	Calculated Val				
19.00	10	1.2e-02	3.2e-02	1.2e-01	1.2e-03

Notes/Assumptions