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1. Introduction 

 
The Supercritical CO2 (S-CO2) power cycle use S-

CO2 as a working fluid. For conventional Sodium-

cooled Fast Reactor (SFR) design, violent reactions of 

sodium-water can be a safety issue. The S-CO2 power 

cycle can improve safety by replacing violent sodium-

water reactions with mild sodium-CO2 reactions. As a 

result, S-CO2 power cycles have been studied for SFR 

application. Since S-CO2 has density close to liquid and 

viscosity close to gas, thus the power system has 

compact equipment and power consumption for 

compression is minimized.  The idea of S-CO2 power 

cycles is to approach the inlet condition of the 

compressor towards the critical point which is 31.3℃ 

and 7.37MPa to improve cycle efficiency. 

Engineers design power cycles assuming all devices 

and conditions are at the steady state. In case of S-CO2 

power cycle, turbine inlet temperature and compressor 

inlet temperature are assumed to be 505℃ and 31.3℃, 

respectively. However, it is not easy to maintain on-

design conditions in real operation. When demand of 

electricity or heat sink temperature changes, load on 

turbine or compressor inlet temperature can change. 

Under these circumstances, power cycle can operate in 

off-design conditions. Thus, an off-design analysis is 

necessary to identify the best operation strategy. 

 

 
Fig. 1. Performance comparison of S-CO2 cycle layout [3] 

 

KAIST research team developed an S-CO2 steady 

state cycle analysis code (KAIST-CCD) and turbine / 

compressor / heat exchanger codes for off-design 

analysis (KAIST-HXD, KAIST-TMD). Carsten (2007) 

conducted various transient analyses of a single shaft S-

CO2 cycle in off-design conditions including part-load 

operation, loss-of-load, and more. Next, Trinh (2009) 

performed in off-design conditions a quasi-steady state 

analysis of turbomachinery operational stability. Yoon 

Han Ann (2016) reconfirmed that the recompression S-

CO2 cycle has the highest efficiency among several 

layouts under design conditions. He confirmed triple-

shaft S-CO2 cycle`s efficiency is higher than that of 

single-shaft S-CO2 cycle and conducted a quasi-steady 

state analysis and transient analysis under off-design 

conditions. Off-design conditions of the S-CO2 cycle 

can be induced due to many reasons. There are 

situations where the load on the turbine varies, the 

temperature of the heat sink changes due to climate 

reason, and regular start-ups and shutdowns. Since 

maintaining the inlet condition of the compressor near 

the critical point is one of the core ideas of this power 

cycle, the performance of the cycle is affected by the 

rapid change of the property when the inlet condition of 

the compressor is fluctuating. 

In this study, the heat sink temperature change off-

design conditions (compressor inlet temperature: 35℃) 

will be studied. Preliminary studies have made it 

possible to analyze the cycle in off-design conditions 

but it has not optimized for the maximum efficiency 

(best operation strategy) in that situation. Jiangfeng 

Wang (2010) used a genetic algorithm and artificial 

neural networks to optimize parameters for achieving 

the maximum exergy efficiency in a simple supercritical 

CO2 cycle. In this study, the same method is used to 

optimize the cycle under off-design conditions. 

 

2. Cycle modeling 

 

 
Fig. 2. Triple-shaft S-CO2 cycle layout 

 

Fig. 2 is a layout of a triple-shaft S-CO2 cycle. This 

cycle has main compressor (MC), re-compressor (RC), 

one cooler, two recuperator (High temperature 

recuperator (HTR), Low temperature recuperator 

(LTR)), one intermediate heat exchanger (IHX) and 
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three turbine (Power turbine (PT), MC turbine (MC-T) 

and RC turbine (RC-T)). In the case of a single-shaft, 

both compressors and turbines have the same RPM, 

while in the triple-shaft cycle configuration, each shaft 

can have different RPMs. The ability to have different 

RPMs allows to increase the efficiency due to increase 

of the freedom in operation. Thus, in this study the 

triple-shaft configuration is used and is conducted under 

the condition of equipment performance and system 

constraints such as Table. 1. System minimum pressure, 

RPM of MC and RPM of RC are used as control 

parameters. Therefore, these parameters will be 

optimized for the off-design condition when the 

compressor inlet temperature is at 35℃. 

 
Table. 1. Cycle information 

 Value 

Machine Property 

PT Efficiency (%) 90 

MC-T Efficiency (%) 90 

RC-T Efficiency (%) 90 

MC Efficiency (%) 80 

RC Efficiency (%) 80 

HTR Effectiveness (%) 95 

HTR Hot side Pressure drop (kPa) 47 

HTR Cold side Pressure drop (kPa) 60 

LTR Effectiveness (%) 95 

LTR Hot side Pressure drop (kPa) 46 

LTR Colde side Pressure drop (kPa) 20 

Cooler Pressure drop (kPa) 40 

IHX Pressure drop (kPa) 20 

System Information 

System Thermal Input (MW) 250 

System Maximum Pressure (MPa) 20 

Compressor Inlet Temperature (℃) 35 

System Minimum Pressure (kPa) 

Optimized MC RPM 

RC RPM 

 

3. Quasi-steady state analysis 

 

Cycle off-design analysis methodology can be 

divided into transient analysis and quasi-steady state 

analysis. Quasi-steady state analysis is a methodology 

that assumes that there is sufficient time interval 

between each transition, and assumes the beginning and 

end of the transition process as steady state. This 

method does not predict the transition state, but it can 

obtain the numerical solution in a relatively short time. 

Therefore, it is suitable for the gradual and slow 

transition state analysis such as heat sink temperature 

change and narrow width output change. 

 

3.1 Heat exchanger off-design model 

 

Off-design analysis models of heat exchanger and 

turbomachinery, which are components of the cycle, are 

necessary for quasi-steady state analysis. The Logarithm 

mean temperature difference (LMTD) methodology is 

one of the most widely used methodologies for the 

analysis of off-design performance of heat exchangers. 

However, since S-CO2 exhibits abrupt changes in 

material properties near the critical point, the LMTD 

methodology derived from the assumption of constant 

material properties is unsuitable. Seong-Min Son (2017) 

analyzed IHX which operated relatively far from the 

critical point using LMTD methodology and HTR/LTR 

using finite difference method (FDM). 

 

3.2 Turbomachinery off-design model 

 

Seong Min Son (2017) used KAIST-TMD developed 

by KAIST research team to make off-design map of S-

CO2 turbomachinery. The KAIST-TMD code is a 1D 

mean line turbomachinery design code that uses the 

corrected mass flow rate concept. 

 

4. Optimization methods 

 

4.1 Genetic algorithm 

 

Genetic algorithms are a search algorithm using 

genetic evolution based on survival of the fittest, in 

which the most appropriate members are selected from a 

given population and they are used to generate the next 

generation. In the genetic process, the gene that best 

adapts to the given environment is selected, crossed, 

and sometimes mutated to deliver the better genetic 

traits to the next generation. In search of the optimum 

by a genetic algorithm, a search is composed of the unit 

of population instead of a single element. Furthermore, 

a fitness function is used and a stochastic mutation rule 

is applied to the search algorithm. A fitness function, 

which is also a performance criterion, is used to select 

the best solution within population and to set parent for 

the descendants that make up the next generation. 

Genetic algorithms use selection, crossover, and 

mutation operations. The selection operator is an 

operator for selecting two parent solutions for the 

crossover. There are various selection operators, but a 

common principle is that a good solution is likely to be 

chosen. The choice probability can be controlled by 

adjusting the difference in fitness between the good and 

the inferior solutions. The degree of this difference is 

called the selection pressure.  

If the selection pressure is higher, the convergence is 

faster, and if the selection pressure is lower, the average 

quality of the population will not improve. In this study, 

the quality proportional roulette wheel, which is the 

most widely used selection method, is used. The fitness 

of the solution i in the solution group is calculated by 

the following equation. 

 

𝑓=−(𝑁−𝑖+(𝑁−𝑀)/(𝑘−1)), 𝑘=3 

 

Here, increasing the value of k increases the selection 

pressure. Generally, the value of k is 3 or 4. A roulette 
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wheel selection based on this fit value is conducted. 

There is a roulette wheel with a size equal to the sum of 

the fit of each chromosome, each chromosome has an 

assigned space proportional to its fitness on the roulette 

wheel. Next, a simple arithmetic crossover is used as the 

crossover operator. In the case of the mutation operator, 

it is set to the probability that 1 will be selected when 

the uniform distribution is used between 1 to 20. Finally, 

efficiency is used as the objective function to represent 

the solution. 

 
Table. 2. Genetic algorithm conditions 

Gene Real number 

Selection Operator Roulette Wheel 

Fitness Function 𝑓=−(𝑁−𝑖+(𝑁−𝑀)/(𝑘−1)), 𝑘=3 

Crossover Operator 
o_1=ap_1+(1-a) p_2 

o_2=(1-a) p_1+ap_2 

Mutation Operator Uniform Distribution 

Objective Function Efficiency 

 

4.2 Artificial neural network (ANN) 

 

Artificial neural networks perform learning from 

experience and have the ability to generalize from given 

training data to unknown data. In addition, the operation 

is performed quickly and can be used for real-time 

operation. An artificial neuron model is calculated by 

adding the results of multiplication of weights to the 

inputs to be introduced and applying them to the 

transfer function. Artificial neural networks typically 

have a multilayer structure consisting of an input layer, 

one or more hidden layers and an output layer. Each 

hidden layer has the same type of transfer function. In 

MATLAB's multilayer neural network, a sigmoid 

transfer function is generally used. A backpropagation 

neural network is one of the most widely used neural 

networks. In backpropagation learning, weight and bias 

values according to the development of multi-layer 

structure are repeatedly calculated. In this study, a 

feedforward net neural network embedded in MATLAB 

is used. Feedforwardnet can be used for all kinds of 

input-output mapping and has the arguments hiddensize 

and trainFcn. Each means the column vector size and 

training function of the hidden layer and has 10 and 

trainlm as the defult values. Trainlm is a training 

function that updates weights and biases according to 

Levenberg-Marquardt optimization. Trainlm is often the 

fastest backpropagation algorithm in the toolbox and 

requires more memory than other algorithms, but it is 

used first in supervised algorithms. 

 
Table. 3. Artificial neural network conditions 

Neural Network Feedforwardnet 

Training Function 
Trainlm 

(Levenberg-Marquardt optimization 

 

5. Off-design analysis 

 

5.1 Collection of sample 

 

There is the system minimum pressure-system net 

work graph according to compressor inlet temperature 

in paper of SeongMin Son (2017). Based on this data, 

the range of control parameters are set. The basic RPM 

of turbines is 7200. Table. 4 shows the range of them. 

Efficiency, net work, mass flow rate and split ratio are 

obtained through the values selected randomly within 

ranges and the physical model code using off-design 

model suggested above. This process is repeated to 

collect about 3000 samples. 

 
Table. 4. Range of control parameters 

Control Parameters Range 

System Minimum Pressure 8090  ~  8942 

MC RPM 6500 ~ 7500 

RC RPM 6500 ~ 7500 

 

5.2 Artificial neural network 

 

 
Fig. 3. Multilayer neural network in MATLAB 

 

Since the physical model code takes long time for 

obtaining the solution, it is replaced with an artificial 

neural network. Fig. 3 shows the learning structure of 

artificial neural network. Inputs are system minimum 

pressure, MC RPM and RC RPM. Outputs are net work, 

efficiency, mass flow rate and split ratio. 3000 samples 

are prepared, 80% of the samples is used for learning, 

10% of for checking validation and 10% for the final 

testing. The overall appearance of the artificial neural 

network uses four hidden layers, and each layer has 10, 

15, 15, and 15 nodes, respectively. The numbers of 

these nodes and layers are not fixed. They can be 

changed for better learning in other cases. 

 
Table. 5. Artificial neural network conditions 

Number of samples 3000 

Learning 80% 

Validation 10% 

Testing 10% 

Number of Nodes 

in Input layer 
3 

Number of Hidden layers 4 

Number of Nodes in Each 

hidden layer 
10 15 15 15 

Number of Nodes 

in Output layer 
4 
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Fig. 4. Regression of neural network in MATLAB 

 

Fig. 4 shows the result of learning according to the 

conditions described above. If the learning is successful, 

the data will be placed along 45 degree line (i.e. y = x 

line) as shown. Also, if the R value is greater than 0.93, 

it is reasonably well fitted ANN. 

 

5.3 Genetic algorithm 

 
Table. 6. Off-design result before optimization 

System Minimum Pressure 8516 

MC RPM 7200 

RC RPM 7200 

Efficiency 42.1386 

 
Table. 7. Off-design optimization result 

System Minimum 

Pressure 
8074 8277 8120 

MC RPM 7362 7300 7264 

RC RPM 6828 6759 6805 

Efficiency 44.44 44.31 43.86 

Physical model code 43.5498 43.5763 43.5096 

 

Table. 6 shows the results before optimization and 

Table. 7 shows the results of optimization using the 

described genetic algorithm. The efficiency increases 

from about 42% to 43.5%. Operating strategy by 

lowering the system`s minimum pressure, increasing the 

RPM of the MC, and lowering the RPM of the RC can 

be determined from the optimization results. 

 

6. Conclusions 

 

In this study, a method of using genetic algorithm and 

artificial neural network to optimize the operation 

strategy in the off-design condition is proposed and a 

triple-shaft S-CO2 cycle is considered. System minimum 

pressure, main compressor RPM, and recompressor 

RPM are used as control parameters. Quasi-steady state 

analysis is used and the case where the heat sink 

temperature changes is investigated. In this case 

(compressor inlet temperature is 35℃), the results 

suggest that main compressor RPM should be increased 

while the minimum pressure and re-compressor RPM 

are reduced to maintain the best performance of the 

power system. 

In the future, the developed platform will be used for 

analyses of various off-design conditions and 

optimizations of control strategy for each analyzed 

condition. 
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