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1. Introduction 

 

Operation with an enhanced plant diagnosis system is 

considered to be an important area to improve safety of 

the future nuclear power plant. To control nuclear power 

plants efficiently and safely, an intelligent operation 

system can be very useful.  Thus, to decrease the 

probability of human error occurrence with an intelligent 

system, the development of an autonomous operation 

system with certain level of intelligence is necessary. To 

operate a nuclear power plant with an intelligent 

operation system in the case of loss of coolant accident 

(LOCA), it is important to quickly detect the accident 

initiator for immediate response.  

 In the previous studies, studies were conducted to 

classify types of accidents, or to track the break size 

when the break location is given through using 

measurement information at the time of an accident in a 

reference nuclear power plant. In this paper, research was 

further carried out to track the specific break location 

within the leg and break size simultaneously only 

through the currently available measurements in a 

conventional nuclear power plant. 

 

2. Methods 

 

2.1. Target Nuclear Power Plant, OPR1000 
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Fig. 1. OPR1000 nodalization of MARS-KS 1.4 simulation 

 

The considered reference nuclear power plant is 

OPR1000. OPR1000 is a South Korean designed two-

loop 1000MWe PWR Generation III nuclear reactor, 

developed by KHNP and KEPCO. In the MARS-KS 

simulation, 4 HPSI (High Pressure Safety Injection) 

junction and 4 LPSI (Low Pressure Safety Injection) 

junction of OPR1000 were used as safety components. 

 
Fig. 2. Break location of MARS-KS LOCA simulation 

 

Original break location of OPR1000 LOCA 

simulations is located between C380 and C390 in Loop1 

Hot-leg. To see the change of measurement information 

as the break location moves slightly, junctions which 

model breakage of LOCA is located at C390, C380, 

C370, and C360 in Loop1 Hot-leg. The break size of 

LOCA varied from 0.002 𝑚2  to 0.05 𝑚2  and the 

simulation was carried out. Since there are 4 break 

locations and 13 break size for each location, a total of 

52 MARS-KS simulation results were used as the 

training set. 

 

2.2. Measurement information 

 

For the accident situation of nuclear power plants, the 

following available measurement information can be 

used. 

- Core inlet/outlet temperature 

- Containment pressure 

- Containment gas temperature 

- Pressurizer pressure 

- Pressurizer water level 

- Collapsed sump water level 

- Collapsed water level 

- Steam generator water level 

In this study, the authors used Core inlet/outlet 

temperature and Pressurizer pressure for the tracking 

algorithm since these parameters are directly related to 

the primary loop and can be used in MARS-KS easily. 

The data was obtained by integrating signal after the 

reactor trip for 10 seconds and 60 seconds in MARS-KS. 

The integrated value of the pressurizer pressure is used 

for the algorithm, and core inlet/outlet temperature is 

integrated by adding 2 core inlet temperatures and 1 

outlet temperature. 

 
PZR signal =  ∫ 𝑃 (𝐶290)

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝+(10𝑠 𝑜𝑟 60𝑠)

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝
                                            (1) 
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Core T signal =  ∫ (𝑇(𝐶300) + 𝑇(390) + 𝑇(𝐶392)) 
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝+(10𝑠 𝑜𝑟 60𝑠)

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝
 (2) 

C290: Pressurizer  

C300: hot leg connected to reactor vessel (loop1) 

C390: discharge leg 1a connected to the reactor vessel 

C392: discharge leg 1b connected to the reactor vessel 

 

 

3. Results and Discussions 

 

3.1. Pressurizer Pressure 
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Fig. 3. Integrated 10s Pressurizer Pressure after reactor trip 
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Fig. 4. Integrated 60s Pressurizer Pressure after reactor trip 

 

As it can be observed from Fig. 3., integrated signals 

were slightly different depending on whether the break 

location is in between the reactor core and the reactor 

coolant pump (C390, C380, C370) or before the pump 

(C360). However, if it is integrated for 60 seconds, it can 

be confirmed that the integrated signals of pressurizer 

pressure are almost the same according to the break 

location and the difference ratio of integrated signal is 

within 0.4%, which is marginal. In the case of 60 seconds, 

if the break size is the same, the integrated signal has 

almost the same value even for the different break 

locations. Thus, the break size can be solely tracked via 

integrated pressure signal in reverse, even if we do not 

know the break location. 

 

3.2. Core inlet/outlet temperature 
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Fig.5. Integrated 10s sum of components temperature after 

reactor trip 
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Fig.6. Integrated 60s sum of components temperature after 

reactor trip 

 

Integrated temperature signal showed different 

tendency from the integrated pressurizer pressure signal. 

In the case of 10 seconds, no significant tendency was 

observed until 0.01𝑚2 , but when the break size was 

larger, a clear difference was observed in the signal 

before the reactor coolant pump (C360) and after the 

reactor coolant pump (C370, C380, C390). The average 

C360 case core inlet and outlet temperature are higher 

than the others. However, in the case of 60 seconds, it 

was confirmed that the temperature difference decreases 

as the breakage size increases to 0.05𝑚2. 

 

3.3 Algorithm and Test set 

 

Simulation results show that it is accurate to use the 60 

seconds integrated signal for pressurizer pressure to track 

the break size and 10 seconds integrated temperature 

signal for core inlet/outlet to track the break location. 10 

test sets were used to determine if the 60 seconds 

pressure integration signal and the 10 seconds 

temperature integration signal can be used to track the 

initial accident condition when only the measurement 

information is given. 
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Fig.7. Algorithm for accident initiator tracking system 

 

The input values used in the test set are as follows. 

Break location: C390, C360 

Break size: 0.045 𝑚2 , 0.035 𝑚2 , 0.025 𝑚2 , 0.015𝑚2,
0.005𝑚2 
The initial accident condition in the test set was tracked 

by using the measurement information of the test set, and 

the following results were obtained. 

Break 

location 

Break 

size 

[𝑚2] 

Tracked 

Break 

location 

Tracked 

Break 

size 

[𝑚2] 

Break 

size error 

rate [%] 

C390 0.045 C390 or 

C380 or 

C370 

0.044415 1.33093 

0.035 C390 or 

C380 or 

C370 

0.035481 1.375164 

0.025 C390 or 

C380 or 

C370 

0.026205 4.819404 

0.015 C390 or 

C380 or 

C370 

0.016537 10.24684 

0.005 Not 

traceable 

0.00512 2.395455 

C360 0.045 C360 0.044188 1.80398 

0.035 C360 0.033627 3.92326 

0.025 C360 0.023956 4.17519 

0.015 C360 0.015449 2.990526 

0.005 Not 

traceable 

0.005029 0.580716 

 

 

 

3.4. Discussions 

 

As a result of the study, the break size and approximate 

break location were successfully tracked through the 60 

seconds measurement information after the trip signal of 

LOCA. Integrated pressurizer pressure value does not 

change largely as the break location moves. The break 

size can be easily tracked by using it. As the break 

location changes, the core inlet/outlet temperature shows 

a different decrement in front of and back of the reactor 

coolant pump. Through this, it was possible to 

distinguish the break location in front of or back of the 

reactor coolant pump with only the measurement 

information. In nuclear power plants, there are several 

accidents other than LOCA. An example of an accident 

is steam generator tube rupture, which is expected to 

have a different change tendency of measurement 

information such as the water level, temperature, and 

pressure of the steam generator. Similarly, it is expected 

that the possibility of judging other accidents as LOCA 

will be sufficiently lowered by increasing the number of 

measurement information to be calculated. Similar 

studies will be conducted for other types of accidents and 

similar parameters will be identified in the future. 
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