Inelastic Seismic Response Assessment of Short Period Structures Subjected to High-Frequency Earthquakes

'18. 5. 18.

Ju-Hyung Kim*, Hyeon-Keun Yang, Jang-Woon Baek, Hong-Gun Park

*PhD student at Seoul National University

00. 목차

01. 연구 소개

1.1 연구 배경

- 확률론적 지진 안전성 평가 절차
- 지진 취약도 평가 절차
- 지진 취약도 평가의 변수

1.2 연구 필요성

02. 연구 내용

2.1 비탄성 에너지 흡수계수 (F_µ)

2.2 국내 지진 특성

- 2.3 지진 특성에 따른 비탄성 에너지 흡수계수
 - 근거리 지진의 특성
 - 지진파의 진동수 성분
 - 강진 지속시간의 영향

03. 결론

: 경주 지진 이후 원전 구조물의 설계 초과 지진에 대한 지진 안전성 평가 방법 검토 필요성

원전 구조물의 지진 안전성 평가 방법

- ☐ 1. 내진 여유도 평가(Seismic Margin Assessment, SMA)
 - Deterministic approach
 - 2. 확률론적 지진 안전성 평가(Seismic Probabilistic Risk Assessment, SPRA)
 - Probabilistic approach
 - Step 1. 지진 재해도 분석 (Seismic Hazard Analysis)
 - Step 2. 구조물 및 기기의 지진 취약도 평가 (Component Fragility Evaluation)
 - Step 3. 계통 및 사고 경위 분석 (Plant System and Accident-sequence analysis)
 - Step 4. 결과 분석 (Consequence Analysis)

국내의 평가기준: KEPIC (해외의 평가 기준 참조하여 반영)

확률론적 지진 안전성 평가 (구조 분야: 취약도 평가)의 국내 기준 및 지침 개발 필요성

: 현행 지진 취약도 분석 절차 검토 및 연구 방향 설정

지진 취약도 분석 Seismic Fragility Analysis (Approximate Second Moment Procedure)

취약도 변수 Fragility Parameters (Random Variable - Factor of Safety)

 $A = FA_{SSE}$ (A: Actual ground motion acceleration capacity) SSE: Safe shutdown Earthquake

 $F = \frac{\text{Actual seismic capacity of element}}{\text{Actual response due to SSE}}$

구조물의 지진 취약도 변수 Fragility Parameters (Random Variable - Factor of Safety)

 $A = FA_{SSE}$ (A: Actual ground motion acceleration capacity)

구조물의 지진 취약도 변수 Fragility Parameters (Random Variable - Factor of Safety)

 $A = FA_{SSE}$ (A: Actual ground motion acceleration capacity)

For structures, $F = F_S F_\mu F_{SR}$

저주기 구조물의 비탄성 에너지 흡수 계수(F_{μ}) 평가 = Strength Reduction Factor (R)

- 원전 구조물의 탄성 설계 결과를 바탕으로 설계 초과지진 발생 시
- 비탄성 응답을 고려하여 내진 성능을 평가하기 위한 계수
- 구조물 및 기기의 취약도 평가 결과에 상대적으로 큰 영향을 미치는 변수

연구 목표

<u>(1차) 평가 식에 대한 검토</u> / (2차) 개선 방안

 \Box 현행 지진 취약도 분석에서 비탄성 에너지 흡수계수 (F_{μ}) 평가 방법

EPRI TR-103959(1994): Methodology for Developing Seismic Fragilities

---- METHOD I ------ METHOD II

Effective Frequency / Effective Damping

Effective Riddell-Newmark

두 가지 방법을 모두 인정하고 있으며 두 방법을 통해 계산된 값의 평균으로 비탄성에너지 흡수계수 (*F_µ*) 결정 두 방법은 서로 다른 가정을 적용하여 계산

METHOD I: Effective Frequency / Effective Damping Method

<u>등가의 탄성 강성</u>(secant stiffness) &

비탄성 구조물의 에너지 소산량과 동일한 <u>등가의 점성 감쇠</u>를 갖는 탄성 구조물로 치환 \rightarrow CSM(Capacity Spectrum Method) 방법과 동일

METHOD II: Effective Riddell-Newmark Method (*R-μ-T* relation)

Riddell-Newmark(1979) – 10 earthquake ground motions recorded on <u>rock</u> and <u>alluvium</u> sites.

Elghadamsi and Mohraz(1987) – considered the effect of <u>soil conditions</u>. This study concluded that deamplification factors are not significantly influenced by soil conditions.

Nassar and Krawinkler(1991) – the <u>epicentral distance</u>, <u>yield level</u>, <u>strain hardening</u> and the type of <u>inelastic material</u> behavior was examined. The study concluded that epicentral distance and stiffness degradation have a negligible influence on strength reduction factors.

Miranda(1993) – ground motions were classified into three groups. (rock, alluvium, soft soil)

다양한 평가 식 존재 → 지진에 의한 지반 운동의 불확실성

METHOD II: Effective Riddell-Newmark Method

Failure mode: Loss of function EPRI Effective Riddell-Newmark(1994) – $F_{\mu} = f(\mu, T, \beta, strong motion dur., yield stiffness ratio)$

$$\begin{array}{ll} 0 \leq T < 0.0303s & F_{\mu4} = \frac{Sa(f,\beta)}{pga} \mu'^{\alpha} & (\exists \ensuremath{\mathbb{E}} \en$$

Long strong motion duration

11 Short strong motion duration

METHOD II: Effective Riddell-Newmark Method (결과적으로 근거리 지진에 더 적합한 방법

등가 점성 감쇠 / 강성 가정하는 Method I은

 2016. 9. 12 경주 지진 - 월성 원전 (27km)
 근거리 지진의 응답 평가에 적합하지 않을 수 있음)

 2017. 11. 15 포항 지진 - 월성 원전 (45km)
 ↑

원전 부지 근거리 지진 (Near-Fault Earthquake) 발생 가능성

- Pulse type(velocity) ground motion
- High frequency earthquake (원전-암반지반)
- Short strong motion duration (less than 6 sec)

Chi-Chi Earthquake ground motion data

KAERI TR-2745(2004)- 근거리 지진에 대한 철골 구조물의 비탄성 응답 특성 분석

Velocity history of three earthquake records

Method II(Effective Riddell-Newmark Method) : 근거리 지진 응답 표현에 더 적합

R-µ-T Relationship

Ground motion database (30)

Near-fault ground motions (15)

No.	Year	Earthquake	Μ	Station	Rjb(km)
1	1989	Loma Prieta	6.93	Gilroy Array #1	2.8
2	1971	San Fernando	6.61	Pacoima Dam	0
<u>3</u>	<u>1978</u>	<u>Tabas</u>	<u>7.35</u>	<u>Tabas</u>	<u>1.79</u>
<u>4</u>	<u>1992</u>	<u>Landers</u>	<u>7.28</u>	<u>Lucerne</u>	<u>2.19</u>
<u>5</u>	<u>1999</u>	<u>Kocaeli</u>	<u>7.51</u>	<u>Gebze</u>	<u>7.57</u>
<u>6</u>	<u>1999</u>	<u>Kocaeli</u>	<u>7.51</u>	<u>lzmit</u>	<u>3.62</u>
7	1989	Loma Prieta	6.93	Los Gatos	3.22
<u>8</u>	<u>2000</u>	<u>Tottori</u>	<u>6.61</u>	<u>OKYH07</u>	<u>15.23</u>
9	2000	Tottori	6.61	SMNH10	15.58
10	2004	Parkfield-02	6	Parkfield – Turkey flat	4.66
11	1976	Friuli	5.3	Tarcento	8
12	1977	Friuli	5.4	Somplago Centrale	9
<u>13</u>	<u>1979</u>	<u>Montenegro</u>	<u>6.9</u>	Ulcinj-Hotel Albatros	<u>21</u>
14	1979	Montenegro	5.1	Ulcinj-Hotel Albatros	8
15	2016	Gyeongju	5.8	DKJ	22

Far-fault ground motions (15)

No.	Year	Earthquake	Μ	Station	Rjb(km)
<u>1</u>	<u>1971</u>	<u>San Fernando</u>	<u>6.61</u>	Cedar Springs	<u>89.72</u>
2	1987	Whittier Narrows	5.99	LA-Wonderland Ave	23.4
3	1989	Loma Prieta	6.93	Point Bonita	83.37
<u>4</u>	<u>1999</u>	<u>Chi-Chi</u>	<u>7.62</u>	<u>ILA001</u>	<u>101.24</u>
<u>5</u>	<u>1999</u>	<u>Chi-Chi 02</u>	<u>5.9</u>	<u>CHY102</u>	<u>78.6</u>
6	1987	Whittier Narrows	5.27	LA-Wonderland Ave	25.04
<u>7</u>	<u>1999</u>	Hector Mine	<u>7.13</u>	LA-Griffith Park Obs.	<u>185.92</u>
<u>8</u>	<u>2004</u>	<u>Niigata</u>	<u>6.63</u>	TCGH14	<u>100.37</u>
9	1979	Montenegro	6.9	Croatia	105
<u>10</u>	<u>1979</u>	<u>Montenegro</u>	<u>6.9</u>	<u>Titograd</u>	<u>55</u>
11	1979	Montenegro	5.8	Titograd	50
12	1990	Griva	6.1	Veria-Cultural center	51
13	1993	Near coast of Filiatra	5.2	Kyparrisia - OTE bldg.	27
<u>14</u>	<u>1995</u>	<u>Kozani</u>	<u>6.5</u>	Veria-Cultural Center	<u>60</u>
<u>15</u>	<u>1997</u>	<u>Strofades</u>	<u>6.6</u>	Koroni-Town hall	<u>136</u>

(붉은 글씨: 고주파 지진) (FFT: 10Hz 个)

(<u>밑출: 강진 지속시간 6초 이상의 지진) (Duration{Arias Intensity 5%~75%} > 6sec)</u> 모든 지진의 전단파속도 760m/s 이상

R-µ-T Relationship

- 1) Pulse type of ground motion
 - : TR-103959, KEPIC 구분하지 않음
- 2) Frequency component
 - : TR-103959, KEPIC 구분하지 않음
- 3) Strong motion duration
 - : TR-103959, *C_D* factor

 $F_{\mu} = 1 + C_D (F'_{\mu} - 1)$ $C_D = 0.6 \sim 1.0$

R-µ-T Relationship

- 동일한 항복 강도의 구조물 가정 (Fixed F_y)
- 근거리 지진 1cycle Energy demand ↑
- Ductility demand (μ) \uparrow
- (동일 R에 대하여 더 큰 ductility demand (µ))
- 같은 ductility demand에 대하여 상대적으로 R 감소

- 탄성 구조물 가정
- 구조물 고유 주기와 유사한 지진 발생하면 탄성 변위 ↑
- 비선형 거동이 동일한 경우 탄성구조물의 공진 현상에 의해 해당 진동수 영역에서 반응수정계수 R 증가

R-µ-T Relationship

Near-fault, High-Freq, Short duration EQ \rightarrow ?

R-µ-T Relationship

Near-fault EQ vs Far-fault EQ

1) 근거리 지진의 R factor는 원거리 지진에 비해 전반적으로 유사하거나 조금 작은 경향
 2) 근거리 지진은 strong motion duration에 따라 dominant pulse 의 형태 변화로
 강진 지속시간에 대한 비탄성 에너지 흡수 계수의 변화가 원거리 지진에 비해 크게
 나타날 것으로 예상

근거리 지진의 강진 지속시간(Strong ground motion duration)의 영향

R-µ-T Relationship

강진 지속시간(Strong ground motion duration)의 영향

한국 원자력학회 18 춘계 학회

02. 연구 내용

R-μ-T Relationship 진동수 성분의 영향

- 저주기 구조물에서는 고진동수 지진의 R값이 큰 경향 (탄성 구조물의 공진 응답)
- 원거리 고진동수 지진은 근거리 고진동수 지진보다 R값이 더 크게 나타남
 - (공진에 의한 응답 증폭은 resonant cycle이 많을수록 증가하므로)

Near-fault # of cycle: 1~2 / Far-fault # of cycle: over 4~

03. 결론

원전 구조물의 확률론적 지진 안전성 평가 절차(SPRA)에서 지진 취약도 평가 절차의 검토 및 개선 방향 설정

원전 구조물의 정확한 지진 취약도 평가를 위해 비탄성에너지 흡수 계수는 다음의 변수를 고려해야 함.

- 지진 발생 거리에 따른 지진 파형의 영향
- 강진 지속시간에 따른 영향
- 지진파의 진동수 성분의 영향

특히, <u>강진 지속시간이 짧은 근거리 고주파 지진</u>의 경우 비탄성에너지 흡수 계수를 현행 식보다 큰 값으로 적용 가능할 것으로 판단

Near-fault E.Q.Far-fault E.Q.Pulse type force / Harmonic force 에 대한 SDF system 응답을 반영한 평가 식 개발 중

