
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-18, 2018 

 

 

Xenon Stability Analysis of SMART 

 
Cheonbo Shim*, Kyunghoon Lee, Chungchan Lee, and Bon Seung Koo 

Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Korea 
*Corresponding author: scvstyle@kaeri.re.kr 

 

1. Introduction 

 
Xenon (Xe) induced spatial oscillation is one of the 

significant safety issues in reactor core design. Thus Xe 

stability evaluation is required by the regulatory body 

before constructing and operating nuclear power plants. 

Although it is known that small reactors are relatively 

free from instability issues caused by Xe oscillation 

compared to large PWRs [1][2], Xe stability analysis is 

also required for SMART.  

One of the useful strategies for Xe stability analysis is 

to evaluate the stability index of some representative 

parameters which are oscillated in perturbed Xe 

dynamics. The stability index is defined as a natural 

exponent which describes the growing or decaying 

amplitude of the oscillation, so it can be measured by 

introducing an exponential-sinusoidal function to the 

time-dependent oscillatory parameters. The stability 

index is the coefficient of the exponent in the function 

[3].  

Three types of Xe oscillations, namely radial, 

azimuthal, and axial oscillations are simulated for 

SMART using the MASTER code [4]. And three 

oscillatory parameters such as radial shape index (RSI), 

azimuthal shape index (AZI), and axial offset (AO) are 

evaluated for each oscillation type. These parameters 

are then plotted to the exponential-sinusoidal function to 

evaluate the stability index.  

In the next section, background and methodologies 

applied to Xe stability analysis of SMART in this paper 

are described. The third section presents analysis results. 

Conclusion of this paper is discussed in the last section.  

 

2. Background & Analysis Methodology 

 

2.1. Stability index 

 

Xe stability can be analyzed by evaluating a factor 

called stability index. This index can be estimated by 

expressing time-dependent oscillatory parameters to an 

exponential-sinusoidal function represented as Eq. (1) 

[3].  

 0 0 0 0( ; , , , , ) sin(2 / )bt

eq eqf t f b T t f f e t T t f     (1) 

where 

( )f t  : Time-dependent oscillatory functions 

0f  : Amplitude of the parameters 

b  : Stability index 

T   : Period 

0t  : Phase shift 

eqf   : Parameter at the equilibrium state 

The stability of a reactor under Xe-induced spatial 

oscillation can be characterized by the stability index ‘b’ 

of Eq. (1). A positive stability index indicates an 

unstable core, and a negative value describes that the 

core is stable as the oscillation continues. 

 

2.2. Time-dependent oscillatory parameters 

 

Xe oscillations are classified into three types 

according to radial, azimuthal, and axial directions in 

this study. Radial, azimuthal, and axial Xe oscillations 

occur between center and peripheral regions, one side 

and the other side on the X-Y plane, and top and bottom 

halves of the reactor core, respectively. RSI, AZI, and 

AO are selected as the parameters to represent the 

spatial oscillation to evaluate the stability index on each 

direction. Their definitions are as follows. 

  ( ) ( ) ( ) / ( )in out totRSI t P t P t P t    (2) 

  ( ) ( ) ( ) / ( )L R totAZI t P t P t P t    (3) 

  ( ) ( ) ( ) / ( )T B totAO t P t P t P t    (4) 

where the subscripts ‘in’, ‘out’, ‘L’, ‘R’, ‘T’, and ‘B’ of 

region-average power P mean center region, peripheral 

region, left side, right side, top half, and bottom half of 

a core, respectively. Center and periphery regions, and 

right and left sides of the SMART core are defined as 

shown in Fig. 1 for radial and azimuthal stability 

analyses. 
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Fig. 1. Center and periphery regions, and right and left sides 

of the SMART core for radial and azimuthal stability analyses 

 

Behavior of node-wise power distributions in Xe 

dynamics is obtained by MASTER [4]. The time-

dependent parameters are then obtained using the node-

wise power distributions.  

 

2.3. Perturbations for Xe Dynamics 

 

Xe dynamics in this paper is simulated by perturbing 

core condition as shown in Fig. 2. Each state is defined 

as the function of the state of control rod position (CR), 
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core power (P), various operating conditions (C), and 

Xe distribution (Xe). State A is the initial state. For the 

simulation of Xe dynamics, State A is shifted to B by 

changing the position of some control rods as the 

perturbation. In consequence, Xe distributions are 

changed over time. After time t0 that is applied for Xe 

buildup under perturbations, the position of the moved 

control rods returns to the initial position. Xe dynamics 

calculation is then started from the time point t0 to 

record the oscillatory parameters.  

 

A(CR0, P, C, Xe0)

B(CR1, P, C, Xe(t))

A'(CR0, P, C, Xe(t))

t

State

t0  
Fig. 2. Scenario for SMART Xe dynamics calculation 

 

Behavior of Xe-induced spatial oscillation depends 

on various core design and operating parameters such as 

core size, inserted reactivity, reactivity feedback, power 

level. Since Xe dynamics simulation should be 

performed under sufficiently conservative conditions to 

verify that SMART is stable under Xe oscillation 

transients, proper conditions are selected and applied in 

Xe dynamics calculations. Four parameters, namely 

inserted control rods, core power, T/H feedback, and Xe 

buildup time (t0) are considered to set the initial and 

perturbed states for Xe dynamics. And the previous 

study [2] had performed parametric studies that 

- The larger the inserted reactivity and core power, 

the larger the amplitude of oscillation. Magnitude 

of inserted reactivity and core power has almost 

no effect on the stability index.  

- T/H feedback has an effect to make the core 

stable in Xe dynamics.  

In order to confirm the effect of Xe buildup time on the 

behavior of oscillatory parameters, behaviors of AO 

with two different buildup times of 1- and 4-hour are 

compared, while keeping other conditions are same. 4-

hour is selected as the expected time to maximize Xe 

number density at a local position in SMART. Fig. 3 

shows AO behaviors.  

 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0 12 24 36 48 60 72 84 96

A
O

Time (hour)

1 Hour 4 Hour

 
Fig. 3. Behavior of AO with different Xe buildup time 

Stability indices for the oscillation shown in Fig. 3 are 

estimated as -0.080 and -0.079, respectively. These 

results show that maximization of Xe buildup increases 

the magnitude of oscillation whereas stability properties 

are not affected by Xe buildup. 

In this regard, the following perturbations are 

considered to enlarge the amplitude as well as to obtain 

severe stability index.  

1) Inserted control rods 

 All rods are initially fully out and 

A. All rods located in the center region are fully 

inserted for radial stability analysis. 

B. All rods located in the right side are fully 

inserted for azimuthal stability analysis. 

C. All rods are inserted to the top half of the 

core for axial stability analysis.  

2) Core power : HFP 

3) T/H feedback  : Not considered. 

4) Xe buildup time : 4 hour 

Note that inactivation of T/H feedback is adopted for 

more conservative analyses although it is unrealistic. 

Also, the maximization of reactivity insertion and Xe 

buildup are considered to increase the amplitude of 

oscillation in order to clarify the behavior of oscillatory 

parameters.  

 

2.4. Non-linear curve fitting 

 

In order to evaluate Xe stability, the time-dependent 

oscillatory parameters such as RSI, AZI, and AO are 

approximated to an exponential-sinusoidal function 

represented as Eq. (1). Since this function is non-linear, 

any numerical methods are required to obtain the 

solution. Also, this function has 5 unknowns whereas 

lots of data points are available for curve fitting, a 

numerical approach such as the least square method is 

required to get a unique optimum solution.  

In order to obtain the parameters numerically, the 

non-linear least square method is applied. Consider a set 

of m data points, (ti, yi) where i is from 1 to m. Then 

square sum of residual of each data point represented in 

Eq. (5) is minimized when optimum parameters are 

found.  

  
2 2

1 1

( ) ( ; ) ( )
m m

i i i

i i

S y f t r
 

   x x x   (5) 

where 

 0 0, , , ,
T

eqf b T t fx   : Solution vector 

The Gauss-Newton method can be used to find the 

optimum solution iteratively. Using the solution vector 

obtained at the kth iteration step, the residual of the ith 

data point for the k+1th iteration step can be guessed by 

applying the first order linear approximation as follows. 

 
5

1 1

1

( )
( ) ( )

k

k k ki
i i j

j j

r
r r x

x

 





 




x x

x
x x   (6) 

where 
1 1k k k

j j jx x x     
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Also, we know that partial derivatives of the target 

function S is zero when S is minimized.  

 2

1 1

( )( ) ( )
2 ( ) 0

opt optopt

m m
i i

i

i ij j j

rS r
r

x x x 
 

 
  
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 

x x x xx x

xx x
x  (7) 

where x is the solution vector and xopt is the optimum 

solution vector to minimize S. If the solution vector 

converges at the k+1th step (xk+1= xopt) and the difference 

of the solution vectors at the kth and k+1th step is 

marginal (xk+1 ≈ xk), inserting Eq. (6) into Eq. (7) leads 

to 
5

1

1 1 1

( ) ( ) ( )
( )

k k k

m m
k ki i i

j i

i j ij j j

r r r
x r

x x x





  
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  
  
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  

x x x x x x

x x x
x  (8) 

Eq. (8) can be converted to a matrix formulation as 

follows. 

  , 1 ,k k k k k T T
J J x J r   (9) 

where Jk and rk are Jacobian matrix and residual vector, 

respectively. 

1 1 1 1

1 5 1 5

1 5 1 5

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k

k

m m m m

r r f f

x x x x

r r f f

x x x x
 

      
   

   
   
     
   
      

         x x x x

x x x x

J

x x x x

 1( ) ( )
T

k k k

mr rr x x   

 

Then the solution vector for the k+1th step is estimated 

by solving the following equation derived from Eq. (9). 

  
1

1 , ,k k k k k k


   T T
x x J J J r   (10) 

Convergence of the solution can be checked by 

observing S. In this calculation, iteration procedure is 

ended when the derivative of the target value S is 

smaller than a specified criterion.  

 
1

( )
max

k

crit

j
j

S

x




 
  
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 x x

x
  (11) 

In the Gauss-Newton method, initial-guessed solution 

affects the convergence of the problem since the matrix   

is dependent on the solution vector. In other words, 

improper initial solution can make this matrix become 

close to a singular matrix and the solution diverges. 

Thus it is required to guess the initial solution properly. 

The initial solutions can be guessed as Eq. (12).  

   

 

 

 

1

1

1
0

0

0 0

1

1

2 ( ) (1) / 1

( 1)1
ln / ( 1) ( )

1 ( )

2 / ( ) 0

2 / ( ) 0

1 2 /
/ sin( )

p

eq eq

eq eq

i

m

eq i

i

p p p p

N

p eq

p p

ip p eq

f f

f f

m
bt i

i eq

i

f f
m

T f N f N

f i f
b t i t i

N f i f

t T f t
t

t T f t

t T
f f f e t

m T



 













 
 

 
    
 
  
   
  

  
   

  
   


   
 







x









 (12) 

where 

pN  : # of local peaks in time-dependent parameters 

( )pf i  : The ith local peak value of the time-dependent 

parameters 

( )pt i  : Time point of ( )pf i  

eqft   : The first time point when the solution is  
eqf  

 

And Fig. 4 demonstrates the parameters used in Eq. (12). 

 

 
Fig. 4. Definition of parameters to define initial-guessed 

solution 

 

Although proper initial solution is guessed, solution 

can diverge during iteration. Unless converged, iteration 

process should be started from a different initial 

solution. A new initial solution can be guessed applying 

small variation on the initial solution determined by Eq. 

(12). Amount of the variation can be selected using 

random number.  

The algorithm to find the solution vector using non-

linear least square curve fitting with the Gauss-Newton 

method is shown in Fig. 5. A computer code realizing 

Fig. 5 is developed in this study for non-linear least 

square fitting of the oscillatory parameters.  
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Fig. 5. Flow chart to find the solution vector 

 

 
3. Analysis Results 

 

Xe stability of SMART is analyzed for the initial and 

equilibrium cores. BOC, MOC, and EOC for each cycle 

are selected as the representative burnup for the analysis. 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-18, 2018 

 

 
Thus total 6 core states are evaluated for Xe stability 

analysis for each oscillation type. As a calculation 

option, 30-minute time step size is used in Xe dynamics.  

Table I shows the severest stability index of each 

oscillation type and its core state. Fig. 6 through Fig. 8 

present the behavior of raw and fitted RSI, AZI, and AO 

of the core state where the severest stability index 

occurs. These figures prove that the developed code for 

fitting of the oscillatory parameters can predict the 

original data with sufficient accuracy. Since the stability 

indices in Table I are estimated by the code, it is assured 

that they are also sufficiently accurate. Table I shows 

that all the severest stability indices have negative value 

regardless of the oscillation type. Thus it is confirmed 

that SMART is stable in any transients caused by Xe-

induced spatial oscillation.  

 

Table I: Severest Stability Index of Each Oscillation 

Type and its Core State 

Type Stability Index (1/hr) Core State 

Radial -0.133 Eq. Cycle, BOC 

Azimuthal -0.090 Init. Cycle, BOC 

Axial -0.079 Init. Cycle, EOC 
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Fig. 6. Raw and fitted RSIs for radial Xe stability analysis 
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Fig. 7. Raw and fitted AZIs for azimuthal Xe stability analysis 
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Fig. 8. Raw and fitted AOs for axial Xe stability analysis 

4. Conclusions 

 

Xe stability of the SMART core is analyzed for radial, 

azimuthal, and axial spatial oscillations by evaluating 

the stability indices which describe the growing or 

decaying amplitude of the oscillation on each direction. 

In order to evaluate them, Xe dynamics calculations 

using MASTER are performed at various core states 

with proper perturbations and then three oscillatory 

parameters of RSI, AZI, and AO are estimated for each 

oscillation type. Their stability indices are obtained by 

using a computer code developed in this work, which is 

based on the non-linear least square curve fitting and the 

Gauss-Newton iterative method. 

Although unrealistic perturbations such as no 

consideration of T/H feedback are adopted for 

conservative analyses of Xe stability, all the evaluated 

stability indices are negative in any core states. Thus it 

can be concluded that SMART is stable for any 

transients caused by Xe-induced spatial oscillations.  
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