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1. Introduction 

 
To obtain high-quality CT images, a large number of 

projection data must be acquired. However, patients are 

exposed to large amounts of x-rays, which can increase 

the potential risk of cancer. In dental CT, low-dose CT 

scan is might be important because x-rays can be 

absorbed in important organs such as the brain and eyes. 

Many methods for acquiring high-quality CT images 

while exposing small amount of x-rays have been 

proposed [1-3]. One of them is to acquire a small number 

of projection data and reconstruct images with them. 

When the image reconstruction is performed with a small 

number of projection data using filtered backprojection 

(FBP), which is an analytic algorithm widely used for 

image reconstruction, streak artifacts occur and quality 

of reconstructed images becomes worse. Unlike the FBP, 

it is possible to obtain reconstructed images with reduced 

artifacts and noise even with a small number of 

projection data by using iterative image reconstruction 

methods. Iterative image reconstruction methods include 

simultaneous algebraic reconstruction technique (SART), 

maximum-likelihood expectation-maximization 

(MLEM), model-based iterative reconstruction (MBIR), 

and compressed sensing (CS). 

We compare the performance of various 

reconstruction methods for sparsely sampled projection 

data using image quality indexes. The image 

reconstruction algorithms used in this study are FBP, 

SART, MLEM and CS-based total-variation (TV) 

minimization. 

 

2. Materials and Methods 

 

2.1 Filtered Backprojection 

 

The FBP algorithm is the most commonly used 

algorithm for CBCT image reconstruction. Since it 

analytically calculate slice images, it can provide 

accurate and fast reconstructed images. The FBP 

algorithm approximates the backprojection procedure of 

cone beam geometry to parallel beam geometry. Through 

a given depth z the image plane (x, y) reconstructed by 

the FBP algorithm can be expressed as [4]  
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where 𝛽 refers to the projection angle, 𝑑SA refer to the 

source-to-AOR distance, 𝑠  is the distance of a voxel 

from a virtual detector plane moved to the AOR, (𝜉, 𝜁) 

represents the pixel coordinates in the detector plane, 

𝑝𝛽′(𝜉, 𝜂) is the projection image multiplied by cosine 

weighting factor, and ℎ(∙)  is the reconstruction filter 

function. 

 

2.2 Simultaneous algebraic reconstruction technique 

 

However, when reconstructing the image using the 

FBP algorithm with sparsely sampled projection data, 

streak artifacts occur in the reconstructed images. 

However, if the image reconstruction is performed with 

the iterative reconstruction algorithm, reconstructed 

images with reduced artifacts and noise can be obtained 

compared with the FBP even with sparsely sampled 

projection data. The SART is one of the most commonly 

used iterative reconstruction algorithm. The SART 

estimates the reconstructed image by updating the 

previous pixel values considering the differences 

between the measurements and the numerical 

computations. A 3D image is updated with the SART 

algorithm by using the following formation [5] 
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where 𝑖  denotes the index of iteration and 𝑎𝑖𝑗  

describes the projection of the 𝑗th pixel by the 𝑖th ray, 

and 𝑝𝑖  is measured projection data. 

 

2.3 Maximum-likelihood expectation-maximization 

 

The SART algorithm is a method of setting up the 

difference between measured projection data and 

calculated projection data as an objective function and 

iteratively minimizing it. On the other hand, the MLEM 

algorithm is a method to minimize the different objective 

function by using the Poisson noise model and the non-

negativity constraint. The MELM calculates the 

reconstructed image considering the ratio of the 

measured projection data to the calculated projection 

data instead of difference. A 3D reconstructed image 

with the MLEM algorithm can be represented with [6] 
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2.4 Total-variation minimization 

 

A method of iteratively reconstructing the image by 

using a CS technique was proposed to reconstruct an 

image accurately even with insufficient projection data. 

In medical and other applications, rapid variation in the 

image may only occur at boundaries of internal structures. 

Thus, the CS technique makes an assumption that an 

image itself might not be sparse, but its gradient image 

could be approximately sparse [7]. The CS-based TV 

minimization algorithm sets up a discrete linear system. 

To solve the linear system, TV minimization algorithm 

is performed by the gradient descent method and 

projection onto convex sets. The TV minimization 

algorithm can be expressed as follow [7,8]: 
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An purpose of TV minimization algorithm is to minimize 

the 𝑙1 − norm of the gradient image, known as the TV 

of the image. The TV minimization is known to reduce 

noise and preserve edges in the images. The TV of image 

can be described by the following equation: 
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2.5 Image quality evaluation metrics 

 

We use structural similarity (SSIM), mutual 

information (MI), root mean square error (RMSE), and 

streak indicator (SI) as image quality evaluation metrics 

to numerically compare the image quality of 

reconstructed images with various algorithms.  

The SSIM is commonly used for comparing two 

images in terms of the means and standard deviations of 

corresponding pixel values as well as their covariance. 

The SSIM is given by [9] 
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where 𝜇𝑥  and 𝜇𝑦  are the average of 𝑥  and y, 

respectively.  𝜎𝑥
2 and 𝜎𝑦

2 are the variance of x and y, 

respectively. 𝜎𝑥𝑦  is the covariance of 𝑥  and 𝑦. And 

𝐶1  and 𝐶2  are variables to stabilize the division with 

weak denominator, which is defined as (𝑘1𝐿)2  and 

(𝑘2𝐿)2, respectively, where 𝐿 is the dynamic range of 

the pixel-values, and 𝑘1 and 𝑘2 are 0.01 and 0.03 by 

default, respectively. 

The MI measures the mutual dependence between the 

two images. The MI can be defined by [10] 
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where 𝑝(𝑥, 𝑦) is the joint probability function of 𝑥 and 

𝑦 , and 𝑝(𝑥)  and 𝑝(𝑦)  are the marginal probability 

distribution function of 𝑥 and 𝑦, respectively. 

The RMSE value is suitable for representing the 

precision by measuring the difference the two images. It 

is also indicates how far apart the individual 

measurements are from the mean value. The RMSE is 

defined by  
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where 𝑖  and 𝑗  are the pixel index of the row and 

column, respectively, and 𝑁  is the total number of 

pixels. 

In order to quantify the under-sampling streak artifacts, 

the metric SI based on the TV values of an image is 

introduced. The SI is can be expressed as [11] 

 

 SI TV refI I  ,                            (9) 

 

where 𝐼  and 𝐼𝑟𝑒𝑓  are reconstructed image and 

reference image, respectively. The original image or 

many views of FBP image are used as reference image. 

A larger TV value corresponds to stronger streak artifacts. 

When the metric SI is interpreted in results, the relative 

change of SI values is more important than the absolute 

SI values. 
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3. PRELIMINARY RESULT 

 

 
 
Fig. 1. Reconstructed slice images of XCAT phantom by using 

the four reconstruction algorithms. The images in each column 

are obtained by FBP, SART, MLEM, and TV minimization. 

The images of each row are obtained by 36, 72, 120, 360 

projections. 

 

 
 
Fig. 2. The image quality evaluation metrics for the number of 

projections. 

 

Fig. 1 shows the reconstructed images of XCAT 

phantoms obtained by using the four reconstruction 

algorithms. The images of each row are obtained as 36, 

72, 120, and 360 projection images, respectively, and the 

images of each column are reconstructed by FBP, SART, 

MLEM, and TV minimization, respectively. 

Fig. 2 shows the image quality evaluation metrics for 

the number of projections in order to determine the 

similarity between the original image and the 

reconstructed images acquired by using four image 

reconstruction algorithms. The results of the FBP were 

worst except for using 360 projections, and the results of 

the MLEM and TV minimization are the best among the 

four image reconstruction algorithms. 

 

4. FURTHER STUDY 

 

  The simulation study was performed with various 

image reconstruction algorithms. We will experimentally 

obtain projection data, perform image reconstruction 

with various algorithms and compare the results. 
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