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1. Introduction 

 
In the most MC calculations, it is assumed that each 

particle is independent of all others. This assumption 

gives the simple evaluation of variance of tallied value. 

However, in the MC eigenvalue calculation based on 

the power iteration method, this assumption occurs 

biased variance of tallied value. In the power iteration 

method, a fission reaction causes the birth of the neutron 

in the next cycle. Therefore, some neutrons are 

correlated with each other. If this correlation is not 

considered, the variance of tallied value will be biased. 

To estimate the real variance of tally values, several 

studies have been performed. Among them, the most 

widely used method is the Gelbard’s batch method [1]. 

The Gelbard’s batch method is easy to implement. 

However, it is difficult to set appropriate batch size [2]. 

The batch size is important parameter in the Gelbard’s 

batch method to estimate the variance. It is well known 

that the increase of the batch size will give the variance 

which is close to the real variance. In general, the batch 

size is determined empirically after several MC 

calculations with different batch sizes. These are 

inefficient and time-consuming works. More efficient 

method to find batch size is required. In this study, the 

new simple method to determine batch size for the 

reliably estimated variance is proposed. 

 

2. Methods and Results 

 

2.1 Review of the Background 

 

The Gelbard’s batch method is developed to calculate 

the real variance in the MC calculation. In the Gelbard’s 

batch method, the total number of active cycle N is 

divided into L batches. Each batch consists of 

successive M active cycles.  
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The tally value is estimated in every batch. For 

example, in the i-th batch, the tally is estimated as 
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where jq  is the estimated tally value in j-th active 

cycle. The final estimated tally value is determined by 

averaging the tally values of each batches, i.e. 
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The estimated real variance is calculated as follows: 
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2.2 The Proposed Strategy to Determine the Batch Size 

of the Gelbard’s Batch Method 

 

The main idea of the new approach is to choose the 

batch size of which the correlation between cycles is 

negligible. It is well known that the correlation of cycles 

causes under-estimated variance and the cycle-to-cycle 

correlation is decreased as the gap of the cycle is 

increased. To select the batch size as the sufficient cycle 

gap of which correlation is negligible, the estimated 

variance will be close to the real variance. 

In general, the correlation between cycles is 

calculated from tallied values of each cycle [3]. 

Through this method, the desirable gap of the cycle 

cannot be acquired before the end of MC calculation. 

To determine the cycle gap for the negligible correlation, 

the new method without full eigenvalue MC calculation 

was developed. 

The fission probability matrix was utilized to obtain 

the gap of cycle. The fission probability matrix is the 

square matrix which is composed of the probability of 

the generation of a neutron [4]. The element of the 

fission probability matrix Pij means the probability of a 

neutron born in i region caused a fission reaction in j 

region. 

It is possible to calculate the probability that a 

neutron causes fission in the next cycles by utilizing the 

fission probability matrix. For example, the probability 

that a neutron which is generated in i region causes 

fission in j region after 2 cycles is as follows: 
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where superscript of Pij
2 means that the probability 

after 2 cycles, i and j denote indices of the fission region 

and the size of fission probability matrix is n by n. In the 
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same way, the probability that a neutron which is 

generated in i region causes fission in j region after 3 

cycles is expressed as follows: 
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Finally, the equation for the probability that a neutron 

in i region causes fission in j region after k cycles is as 

follows: 
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Hereafter, Pij
k will be called the fission cumulative 

probability matrix after k cycles. As Pij
k-1 and Pij are less 

than one, Pij
k will be converged to some values with the 

increase of k. It is assumed that if Pij
k is converged, the 

correlation between a certain cycle and the cycle after k 

is negligible. The main idea of the proposed method is 

to determine batch size as the gap of cycles of which 

correlation is negligible. 

 

2.3 Verification 

 

To apply the proposed strategy for determining batch 

size, simple problems were solved. 

 

2.3.1 Three Thick One-dimensional Slabs Problem  

 

Three thick one-dimensional slabs problem [5] was 

solved to apply the proposed strategy. The geometry of 

this problem is shown in Fig. 1. The unit 1 and unit 2 

are consist of uranyl solution. 

  

Fig. 1. The Geometry of Three Thick One-dimensional Slabs 

Problem 

The fission probability matrix of the problem was 

calculated by McCARD [6] and shown in Fig. 2. The 

unit 1 and unit 2 were divided into 10 regions for the 

fission probability matrix. Ten thousands of neutrons 

were utilized to estimate the fission probability matrix. 

 

Fig. 2. The Fission Probability Matrix of the Three Thick 

One-dimensional Slabs Problem 

As shown in Fig. 3, the fission cumulative probability 

was converged after 60th cycle. Thus, the batch size was 

set to 60. 

 

Fig. 3. The Fission Cumulative Probability of the Three Thick 

One-dimensional Slabs Problem 

The fission reaction rates were tallied in each region 

by changing the batch size for the verification of the 

proposed strategy. The results were tabulated in Table I. 

The estimated standard deviations (SD) of the tallies 

were compared to the real SD. The real SD was 

calculated by McCARD. To calculate the real SD, one 

hundreds of MC calculations were performed changing 

random seed. As shown in Table I, the estimated SD 

approaches to the real SD with the increase of batch size. 

When the batch size is 60, the relative error of estimated 

SD is 3.85% in average. It was considered that the 

appropriate batch size was determined by the proposed 

method. 

 

2.3.2 Homogenized Cylindrical Reactor 

 

Fig. 4 shows the homogenized cylindrical reactor. 

The homogenized reactor region is composed of 

uranium oxide and zircaloy. The water is used as the 

reflector. 
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Fig. 4. The Geometry of the Homogenized Cylindrical 

Reactor 

The homogenized reactor was divided into 20 

concentric regions to calculate the fission probability 

Matrix. The fission probability matrix was calculated 

with 20,000 neutrons and shown in Fig. 5.   

 

 

Fig. 5. The Fission Probability Matrix of the Homogenized 

Cylindrical Reactor 

 
Fig. 6. The Fission Cumulative Probability Matrix of the 

Homogenized Cylindrical Reactor 
 

In the Fig. 6, the fission cumulative probability of 

region 20 was converged for the last and it was 

converged after 200 cycles. By the proposed strategy, 

the batch size was set to 200. Fluxes of 20 regions were 

tallied, and the estimated SDs were calculated by 

changing the batch size. The real SD was calculated by 

100 independent MC calculations with different random 

seed. The results were tabulated in Table II. Two 

thousands of neutrons per cycle, 500 inactive cycles, 

and 50,000 active cycles were utilized in the 

calculations. 

 When the Gelbard’s batch method was not utilized, 

the estimated SDs of flux were different from the real 

SDs over 85% in average. When the batch size was 200, 

the relative error of the estimated standard deviation 

was about 10%.  

 

3. Conclusions 

 

In this study, a new method to determine the batch 

size for the Gelbard’s batch method was proposed. The 

main idea is to select the batch size as the gap of cycles 

of which the cycle-to-cycle correlation is negligible. To 

calculate the gap of cycles, the fission probability matrix 

Table I: Relative Errors of the SDs for the Three Thick One-dimensional Slabs Problem by the Batch Size 

Tally  

Region 

Fission Reaction 

Rate 
6

( 10 / )particle


  

Real Standard 

Deviation 
9

( 10 )


  

aRelative Error of Estimated Real Standard Deviation (%) 

Batch 

Size 1 
10 30 60 100 

1 1.18 5.78 -70.7 -29.32 -8.34 6.76 5.00 

2 2.51 12.22 -78.65 -31.93 -10.38 3.93 2.07 

3 3.28 15.31 -80.73 -33.61 -10.68 5.24 1.16 

4 3.54 15.52 -80.43 -35.15 -12.19 3.35 -1.42 

5 3.83 13.62 -75.92 -30.67 -9.35 1.02 -3.86 

6 3.83 13.18 -75.1 -31.68 -12.3 3.24 0.48 

7 3.55 14.88 -79.57 -31.29 -8.04 8.62 5.66 

8 3.29 15.93 -81.45 -35.51 -12.66 2.71 -2.15 

9 2.52 12.83 -79.64 -35.06 -12.84 -0.95 -4.12 

10 1.19 6.13 -72.32 -33.35 -12.95 -2.67 -5.21 

Average of | relative error | (%) 77.45 32.76 10.97 3.85 3.11 

a Relative Error is calculated by ( ) ( ) 100estimated SD real SD real SD   
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was utilized. For the verification of proposed strategy, 

the two problems in the Section 2.3 were solved to 

apply the proposed method. As a result, the proposed 

method can provide the batch size for the reliable 

variance. 

To determine the optimum batch size was difficult by 

the proposed method. It was considered that only 

correlations between cycles were counted in the 

proposed method although the real variance is a 

function of several parameters. However, it is possible 

to give the guidance of the use of the Gelbard’s batch 

method by the new method. It is expected that the 

proposed method can be actively utilized for the 

estimation of the real variance in MC calculations. 
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Table II: Relative Errors of the SDs for the Homogenized Cylindrical Problem by the Batch Size 

Tally 

Region 

Flux
9 2

(10 / )cm particle




 

Real 

Standard 

Deviation 
9

( 10 )


  

aRelative Error of Estimated Real Standard Deviation (%) 

Batch 

Size 1 
10 20 50 100 200 400 

1 9.74 54.4 -81.86 -43.31 -33.47 -21.17 -19.09 -18.96 -20.10 

2 9.71 49.3 -87.89 -45.98 -34.85 -21.01 -17.6 -18.08 -19.79 

3 9.60 44.2 -89.8 -48.52 -36.54 -22.80 -17.92 -17.02 -17.29 

4 9.43 38.6 -90.35 -49.83 -37.29 -23.80 -18.05 -15.10 -13.37 

5 9.18 32.5 -90.13 -49.99 -37.36 -23.71 -17.11 -12.63 -10.93 

6 8.89 26.6 -89.34 -48.41 -35.36 -20.99 -14.60 -8.70 -7.18 

7 8.55 21.6 -88.26 -48.14 -35.63 -21.68 -16.08 -10.88 -12.79 

8 8.16 17.0 -86.48 -46.53 -34.77 -21.33 -15.34 -10.11 -13.03 

9 7.72 12.3 -83.05 -39.18 -28.06 -15.83 -9.89 -6.41 -9.60 

10 7.25 9.02 -78.88 -30.14 -20.23 -9.59 -4.35 -2.97 -4.22 

11 6.75 6.76 -74.18 -20.39 -9.79 -0.46 4.46 3.36 6.07 

12 6.2 6.04 -73.55 -17.93 -6.57 2.31 5.37 0.90 9.83 

13 5.63 7.32 -80.05 -34.42 -23.79 -12.03 -11.05 -11.41 -6.42 

14 5.04 8.79 -84.84 -44.82 -33.85 -21.07 -18.16 -14.99 -13.96 

15 4.43 9.45 -87.18 -48.60 -37.1 -23.95 -19.9 -15.54 -18.55 

16 3.81 9.34 -88.30 -49.26 -36.83 -22.73 -16.68 -11.62 -15.00 

17 3.18 8.72 -88.83 -48.49 -35.72 -21.95 -15.14 -9.44 -12.01 

18 2.55 7.75 -88.99 -47.85 -35.59 -23.30 -16.67 -11.10 -11.77 

19 1.93 6.22 -88.31 -45.14 -33.25 -21.69 -16.05 -9.33 -8.06 

20 1.35 4.45 -86.41 -40.28 -28.29 -16.26 -10.12 -2.98 0.52 

Average of | relative error | (%) 85.33 42.36 30.72 18.38 14.18 10.58 11.52 

a Relative Error is calculated by ( ) ( ) 100estimated SD real SD real SD   

 

 

 

 


