
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

GPU-based Parallel Krylov Linear System Solver for CMFD calculation in nTRACER

Junsu Kang and Han Gyu Joo*

Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

Heterogeneous computing systems using Graphic

Processing Unit (GPU) are one of the most popular high
performance computing platforms. Massively parallel
architecture of GPUs allows more power-efficient and
higher throughput than CPUs. Therefore, the inclusion
of GPU in the neutron transport calculation is
increasingly explored.

nTRACER is a direct whole core transport
calculation code based on the planar Method Of
Characteristics (MOC) solver and the axial Simplified
P3 (SP3) solver in the framework of 3D Coarse Mesh
Finite Difference (CMFD) method [1]. The feasibility of
GPU acceleration of MOC calculation in nTRACER
had been explored, and the result was successful [2].

GPU acceleration of CMFD calculation in nTRACER
is required to keep up with enhanced performance of
GPU-based MOC. For the solution of the large sparse
linear system involved in the CMFD formulation, the
preconditioned Krylov iterative solver, especially
preconditioned BiConjugate Gradient Stabilized solver
(pBiCGSTAB), has been used as the linear solver of
nTRACER. Therefore GPU-based pBiCGSTAB linear
system solver is constructed in this work.

The optimal strategies for implementation of GPU-
based pBiCGSTAB for CMFD calculation will be
discussed. Though nTRACER already has well
optimized sequential CPU-based CMFD calculation
scheme, conventional optimization strategies could
cause overhead cost in parallel heterogeneous system.
Therefore different strategies are implemented and
evaluated through numerical experiments. The resulted
GPU-based solver’s performance will be compared with
conventional nTRACER solver.

2. CMFD calculation in nTRACER

2.1. CMFD formulation

In CMFD calculation, the sub-pin level fine mesh in
MOC calculation is homogenized into pin-cell based
coarse mesh. Then coupling coefficients are generated
to construct coarse mesh diffusion problem. An
eigenvalue problem arises as a result of CMFD
formulation and be solved by power iteration. The linear
system solution is required for power iteration as:

 ()
()

()1 1 ,n n
n

effk
f f+ =M χF (1)

where M represents neutron migration by diffusion and
scattering, F represents neutron generation by fission.
Due to the large-scale, sparsity and asymmetry of M ,
the linear system in Eq. (1) is solved by pBiCGSTAB in
nTRACER.

2.2.Two-level CMFD

nTRACER employs two-level CMFD formulation.
The first level is the multi-group CMFD (MG CMFD)
based on MOC transport solution. The second level is
the group-condensed CMFD (GC CMFD) which has
same coarse mesh geometry as multi-group CMFD with
condensed energy groups. The MG CMFD calculations
are accelerated by the GC CMFD calculation.

Figure 1 shows the two-level CMFD algorithm. GC
CMFD is repeated with frequency number 5 which is
determined empirically. In this work, ‘outer iteration’
represents the power iteration for eigenvalue update in
CMFD and ‘inner iteration’ represents pBiCGSTAB
iteration for linear system solving.

 i = 1, 2, 3 ... for

1 outer iteration of multi-group CMFD

0if / , then quiti MGe<r r

 (i (mod 5) = 0) if then
 j = 1, 2, 3 ... for

1 outer iteration of group-condensed CMFD

0if / , then quitj GCe<r r

Fig. 1. Iteration strategy of two-level CMFD calculation.

2.3.Gauss-Seidel group sweep scheme

The migration matrix M in Eq. (1) can be separated

to D and S , which represent migration by diffusion and
scattering respectively, as follows:

 .= −M D S (2)

Usually S contains most of nonzero entries of M .
Therefore S has been excluded in the inner iteration of
nTRACER by putting S in the RHS of linear system and
solving the linear system group by group in Gauss-
Seidel manner as follows:

() () () () ()

1
1 1

' ' ' '
' 1 ' 1

.
g G

n n n n n
g g g g g g g g g

g g g
f λ ψ f f

−
+ +

= = +

= + +∑ ∑D χ S S (3)

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

If up-scattering doesn’t exist in the problem, only one
sweep over energy group is enough to get the exact
solution. Usually the up-scattering reaction is infrequent.
Therefore the solution of whole linear system is
determined after only one group sweep over whole
energy range and one additional group sweep over
energy range where up-scattering exists.

The lack of robust consideration of the relation
between multi-group spectra of this scheme can be
resolved by group-condensed CMFD in the multi-grid
manner. As a result the total floating point operations
(flop) required for inner iteration is reduced with similar
convergence rate when compared to explicit solution of
the linear system in Eq. (1).

3. Implementation Strategy for GPU

3.1. spMv algorithms

BiCGSTAB algorithm is composed by Sparse matrix-
vector multiplication (spMv), dot product and vector
update. spMv is the most time-consuming operation in
the BiCGSTAB algorithm. Since spMv has low
arithmetic intensity, memory access pattern determines
the performance of spMv. Therefore the performance of
spMv algorithm differs by the matrix structure. To find
optimal spMv algorithm for CMFD linear system,
suitability of 2 compressed sparse row (CSR) sparse
matrix format based algorithms and 1 sliced ELLPACK
(SELL) based algorithm are compared in 4.2. Detailed
implementation in reference papers [3, 4] are omitted in
this paper and summarized description for each
algorithm is provided below.

3.3.1. CSR-scalar

Fig. 2. Example of CSR sparse format and memory access
pattern of CSR-scalar.

CSR is one of the most widely used sparse matrix
format due to its wide applicability. The most straight
forward CSR-based spMv algorithm is CSR-scalar. This
algorithm assigns computation works of a row to each
thread. As shown in Figure 2, threads access entries that
are apart from each other. While this non-coalescent
memory access works well in CPU, it wastes the
transfer capacity in GPU.

3.3.2. CSR-2step

Several modified CSR-based algorithm has been
proposed to obtain better performance in GPU. The
algorithm proposed by Gao et al. [3] separates spMv
into 2 step as partial product step and summation step.
Fully coalescent memory access is achieved in partial
production step. In this work, this algorithm will be
referred as ‘csr-2step’.

3.3.3. SELL-P spMv

Anzt et al. [4] proposed spMv algorithm based on
SELL-P format which is extension of SELL format.
This algorithm will be referred as ‘sellp’ in this work.
SELL slices the matrix into blocks of rows and pads the
rows with zeros to achieve same length among rows in
the same block. Since the data is stored in column major
order, natural coalescent memory access in spMv is
achieved. But overhead cost can be caused in SELL
format because padded zeros have to be processed too.

3.2. Minimization of overhead communication cost

Computation cost can be categorized into arithmetic
cost and communication cost. Communication cost
includes all types of data movements. In heterogeneous
computing platform composed by CPUs and GPUs,
overhead communication cost is caused by data transfer
and synchronization between a CPU and a GPU.
Usually these overhead communication costs are heavy.

Iterative solvers require enormous communications
between processor units while the amount of arithmetic
work per communication is small. When considering the
extremely high flop/s of GPU and heavy overhead
communication cost, runtime of GPU-based iterative
solver is dominated by communication cost.

To minimize the overhead communication cost, all
operations in the pBiCGSTAB algorithm are moved to
the GPU in this work. Though some operations like
reduction algorithm in the dot product or operations
with scalar variables are slower on GPU, overall
performance is improved. Only one data transfer is
remained per an inner iteration, the residual error
norm 0r , which is inevitable for convergence check.

The Gauss-Seidel group sweep scheme, which is
explained in 2.3., provides great reduction of arithmetic
cost. However communication cost increases since this
scheme solves small linear systems for each group
rather than solve a large linear system relating all groups.

The performances of Gauss-Seidel group sweep and
explicit solution scheme are compared in 4.3.

3.3. Approximate inverse preconditioner

nTRACER has employed block Incomplete LU
(BILU) preconditioner that is well customized to CMFD

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

problem. However triangular solve required to applicate
ILU-type preconditioner is naturally sequential. Though
several methods exist to achieve parallelism in
triangular solve, the scalabilities of these methods are
limited that utilizing massive parallelism of GPU is
usually impossible. So another type of preconditioner
called sparse approximate inverse (SPAI) is used for
GPU platform. SPAI approximates inverse of matrix
A in the linear system =Ax b by Frobenius norm
minimization for prescribed sparsity pattern S :

1

min min ,
N

j jm mj∈ ∈
=

− = −∑AK I AK e
S S

 (4)

where jK , je are j-th column of preconditioner and

identity matrix respectively [5]. As SPAI approximates
the inverse of coefficient matrix, application of it in
BiCGSTAB algorithm can finished by a spMv which is
naturally parallelizable.

3.4. Single precision arithmetic

Usual commercial GPUs are specialized for single
precision arithmetic. But round-off error accumulated
in iterative calculation can limit the accuracy of solution
with single precision. The strategy called ‘iterative
refinement’ is employed to use single precision
arithmetic for linear system solution on GPU with same
level of accuracy as double precision calculation [6].

4. Numerical Experiment Results

4.1. Experimental setup

Table 1. Hardware specifications.

 Model SP
Gflop/s

DP
Gflop/s

Band
width
(GB/s)

CPU Intel® i7-6700 108.8 54.4 34.1
GPU Radeon R9 280x 4096 1024 288

Table 2. Properties of the test matrices.

CASE #group NNZ (310×) #row(310×) NNZ/row
C5G7 7 590 73 8.1

VERA#4 47 3,761 153 24.6
VERA#5 47 26,928 1,098 24.5

The heterogeneous system which combines a CPU

and a GPU is set to obtain experimental results. The
theoretical peak processing power and memory
bandwidth of the processors are shown in Table 1.

Benchmark problems with different properties are
chosen as test problems to observe performance
tendency of algorithms [7, 8]. Table 2 shows properties
of test problems. For VERA #4-5 case, GC CMFD
calculation is carried out with 8 condensed groups. The
performance for VERA #5, which is realistic 2D core

problem, will be the final performance criteria of new
GPU-based iterative linear system solution. VERA #5
is practically the largest problem handled by single GPU
in realistic application, because the 3D core problem
will parallelized into planes in multi-GPU system. The
outer iteration convergence tolerance is set as 0.1 for
MG CMFD and 0.2 for GC CMFD. The inner iteration
convergence tolerance is set as 0.01.

4.2. spMv performance comparison

Table 3. Storage overhead of SELL-P format.

 C5G7 VERA#4 VERA#5
SELL-P NNZ (310×) 748 4,024 28,906

overhead/NNZ (%) 27 7.0 7.3

Fig. 3. Estimated flop/s of spMV algorithms.

Table 3 shows the storage overhead caused by the
SELL-P format. The arithmetic cost of the spMv is
proportional to the number of nonzero entries (NNZ).
Since NNZ per row is similar in same group, small
number of group causes discrepancy among row lengths
in each block of SELL-P. As a result, sellp algorithm
requires 27% more flop in C5G7 problem while it
requires 7% more flop with VERA cases. Figure 3
shows performance comparison results of spMv
algorithms. Estimated flop/s in figure 3 only counts
effective flop and neglects additional arithmetic works
in sellp algorithm. Despite storage overhead, sellp
outperforms CSR-based algorithms. When see the
difference between problems, the performance of sellp
is improved with large NNZ per row while csr-scalar
shows opposite tendency. But even in the C5G7 case,
which has very sparse matrix due to small number of
group, the performance of sellp is superior to CSR-
based algorithms.

4.3. Calculation scheme comparison

The performance of Gauss-Seidel group sweep and
explicit solution scheme is evaluated by the computation
time required for linear system solving (Ax=b time) in
one CMFD calculation. Table 4 shows the performance
comparison results. In given computing system, explicit
solution is superior to Gauss-Seidel group sweep

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

scheme due to smaller overhead communication cost,
although total flop count is larger with explicit solution.
When see the tendency, Gauss-Seidel scheme has
advantage in problem with large geometry and many
number of group that has relatively large arithmetic
work per communication. But even in VERA#5, which
is practically the largest problem, explicit solution
shows better performance. When considering explicit
solution will be benefitted from high-end GPU with
higher throughput, which reduces time for arithmetic
work, explicit solution is more suitable for GPU-based
solution.

Table 4. Calculation scheme comparison results.

CASE #outer
iteration

Flop count
(910×)

Ax=b time
(s)

C5G7 G-S. 8 0.32 0.16
explicit 9 0.72 0.10

VERA #4 G-S. 7 0.65 0.83
explicit 7 3.42 0.19

VERA #5 G-S. 10 7.07 2.0
explicit 7 26.0 0.95

4.4. Performance of GPU-based solution

Table 5. VERA#5 calculation results.

 CPU CPU+GPU
of MOC (# of CMFD) 3 (4) 3 (4)

MG outer iter. 32 31
GC outer iter. 185 141

flop count (910×) 22 208
Preconditioner construction (s) 0.11 4.39

Ax=b time (s) 30.38 8.02

The performance of GPU-based CMFD linear system

solution and conventional CPU-based sequential
nTRACER CMFD linear system solution are compared.
GPU-based solver uses explicit scheme with SPAI
preconditioner while conventional solver uses Gauss-
Seidel group sweep and BILU preconditioner. VERA
#5 problem is solved for comparison. Table 5 shows the
comparison results. In this work, every parts of CMFD
calculation except linear system solving is done in
sequential environment. Due to heavy construction cost
of SPAI, time for preconditioner construction is
increased in GPU-based solution. Since SPAI requires
more inner iteration than BILU preconditioner and
explicit solution requires more flop than Gauss-Seidel
group sweep, flop count is much larger with GPU-based
solution. Total flop required until convergence is about
9 times larger with GPU-based solution. In spite of flop
amount, the Ax=b time of GPU-based solution is
reduced to 26% level of conventional solution.

5. Conclusion

GPU-based pBiCGSTAB solver is constructed to

accelerate CMFD calculation in nTRACER. The

evaluation of spMv algorithms in GPU shows sellp
algorithm which allows fully coalescent memory access
outperforms other algorithms. Fully coalescent memory
access maximizes data transfer per cycle on GPU. In
addition, explicit solution of whole linear system shows
better performance than Gauss-Seidel group sweep on
GPU due to the overhead cost caused by communication
between CPU and GPU. Both sellp and explicit solution
increases the total arithmetic cost when compared to
conventional algorithms. These results show that the
performance of Krylov iterative solver in parallel
heterogeneous system is determined by communication
cost rather than arithmetic cost.

 The resulted GPU-based solver reduces CMFD
linear system solving time to roughly 26% in 2D core
problem, though the total flop count is about 9 times
larger than the conventional solution. However this
research is limited on single GPU calculation on single
plane, research on multi-GPU calculation on 3D
problem is required as future research.

ACKNOWLEDGEMENTS

This research is supported by National Research

Foundation of Korea (NRF) Grant No. 2016M3C4A7952631
(Realization of Massive Parallel High Fidelity Virtual
Reactor)

REFERENCES

[1] Y. S. Jung et al., “Practical Numerical Reactor Employing
Direct Whole Core Neutron Transport and Subchannel
Thermal/Hydraulics Solvers,” Annals of Nuclear Energy, Vol.
62, pp. 357–374, 2013.
[2] N. J. Choi, J. S. Kang, H. G. Joo, “Massively Parallel
Method of Characteristics Neutron Transport Calculation with
Anisotropic Scattering Treatment on GPUs,” International
Conference on High Performance Computing in Asia-Pacific
Region, Tokyo, Japan, Jan 28–31, 2018.
[3] J. Gao, R. Liang, J. Wang, “Research on the conjugate
gradient algorithm with a modified incomplete Cholesky
preconditioner on GPU,” Journal of Parallel and Distributed
Computing, Vol. 74(2), pp. 2088-2098, 2014.
[4] H. Anzt et al., “Acceleration of GPU-based Krylov solvers
via data transfer reduction,” The International Journal of High
Performance Computing Applications, Vol. 29(3), pp. 366-
383, 2015
[5] M. J. Grote, T. Huckle, “Parallel Preconditioning with
Sparse Approximate Inverse,” SIAM Journal on Scientific
Computing, Vol. 18(3), pp. 838-853, 1997
[6] N. J. Choi, et al., “Performance Comparison of Linear
System Solvers for the CMFD Acceleration on GPU
Architectures,” Transactions of the Korean Nuclear Society
Spring Meeting, Jeju, Korea, May 17-18, 2018.
[7] M.A. Smith, E.E. Lewis, B.C. Na, “Benchmark on
Deterministic 2-D/3-D MOX fuel assembly transport
calculations without spatial homogenization,” OECD/NEA
report, NEA/NSC/DOC(2003)16, 2003.
[8] A. T. Godfrey, “VERA Core Physics Benchmark
Progression Problem Specifications,” Rev. 4, CASL-U-2012-
0131-004, 2014.

