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1. Introduction 

 
Heterogeneous computing systems using Graphic 

Processing Unit (GPU) are one of the most popular high 
performance computing platforms. Massively parallel 
architecture of GPUs allows more power-efficient and 
higher throughput than CPUs. Therefore, the inclusion 
of GPU in the neutron transport calculation is 
increasingly explored.  

nTRACER is a direct whole core transport 
calculation code based on the planar Method Of 
Characteristics (MOC) solver and the axial Simplified 
P3 (SP3) solver in the framework of 3D Coarse Mesh 
Finite Difference (CMFD) method [1]. The feasibility of 
GPU acceleration of MOC calculation in nTRACER 
had been explored, and the result was successful [2].  

GPU acceleration of CMFD calculation in nTRACER 
is required to keep up with enhanced performance of 
GPU-based MOC. For the solution of the large sparse 
linear system involved in the CMFD formulation, the 
preconditioned Krylov iterative solver, especially 
preconditioned BiConjugate Gradient Stabilized solver 
(pBiCGSTAB), has been used as the linear solver of 
nTRACER. Therefore GPU-based pBiCGSTAB linear 
system solver is constructed in this work.   

The optimal strategies for implementation of GPU-
based pBiCGSTAB for CMFD calculation will be 
discussed. Though nTRACER already has well 
optimized sequential CPU-based CMFD calculation 
scheme, conventional optimization strategies could 
cause overhead cost in parallel heterogeneous system. 
Therefore different strategies are implemented and   
evaluated through numerical experiments. The resulted 
GPU-based solver’s performance will be compared with 
conventional nTRACER solver. 
 

2. CMFD calculation in nTRACER 
 

2.1. CMFD formulation 
 

In CMFD calculation, the sub-pin level fine mesh in 
MOC calculation is homogenized into  pin-cell based 
coarse mesh. Then coupling coefficients are generated 
to construct coarse mesh diffusion problem. An 
eigenvalue problem arises as a result of CMFD 
formulation and be solved by power iteration. The linear 
system solution is required for power iteration as: 
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where M  represents neutron migration by diffusion and 
scattering, F represents neutron generation by fission. 
Due to the large-scale, sparsity and asymmetry of M , 
the linear system in Eq. (1) is solved by pBiCGSTAB in 
nTRACER.  
 
2.2.Two-level CMFD  
 

nTRACER employs two-level CMFD formulation. 
The first level is the multi-group CMFD (MG CMFD) 
based on MOC transport solution. The second level is 
the group-condensed CMFD (GC CMFD) which has 
same coarse mesh geometry as multi-group CMFD with 
condensed energy groups. The MG CMFD calculations 
are accelerated by the GC CMFD calculation.  

Figure 1 shows the two-level CMFD algorithm. GC 
CMFD is repeated with frequency number 5 which is 
determined empirically. In this work, ‘outer iteration’ 
represents the power iteration for eigenvalue update in 
CMFD and ‘inner iteration’ represents pBiCGSTAB 
iteration for linear system solving. 

 
   i  = 1, 2, 3 ... for  

1 outer iteration of multi-group CMFD  

0if  / , then quiti MGe<r r  

 (i (mod 5) = 0) if then   
  j  = 1, 2, 3 ... for  

1 outer iteration of group-condensed CMFD                 

0if  / , then quitj GCe<r r  

Fig. 1. Iteration strategy of two-level CMFD calculation. 
 

2.3.Gauss-Seidel group sweep scheme 
 
The migration matrix M in Eq. (1) can be separated 

to D and S , which represent migration by diffusion and 
scattering respectively, as follows: 

 
 .= −M D S   (2) 
 

Usually S contains most of nonzero entries of M . 
Therefore S has been excluded in the inner iteration of 
nTRACER by putting S in the RHS of linear system and 
solving the linear system group by group in Gauss-
Seidel manner as follows: 
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If up-scattering doesn’t exist in the problem, only one 
sweep over energy group is enough to get the exact 
solution. Usually the up-scattering reaction is infrequent. 
Therefore the solution of whole linear system is 
determined after  only one group sweep over whole 
energy range and one additional group sweep over 
energy range where up-scattering exists.  

The lack of robust consideration of the relation 
between multi-group spectra of this scheme can be 
resolved by group-condensed CMFD in the multi-grid 
manner. As a result the total floating point operations 
(flop) required for inner iteration is reduced with similar 
convergence rate when compared to explicit solution of 
the linear system in Eq. (1).   
 

3. Implementation Strategy for GPU 
 

3.1. spMv algorithms 
 

BiCGSTAB algorithm is composed by Sparse matrix-
vector multiplication (spMv), dot product and vector 
update. spMv is the most time-consuming operation in 
the BiCGSTAB algorithm. Since spMv has low 
arithmetic intensity, memory access pattern determines 
the performance of spMv. Therefore the performance of 
spMv algorithm differs by the matrix structure. To find 
optimal spMv algorithm for CMFD linear system, 
suitability of 2 compressed sparse row (CSR) sparse 
matrix format based algorithms and 1 sliced ELLPACK 
(SELL) based algorithm are compared in 4.2. Detailed 
implementation in reference papers [3, 4] are omitted in 
this paper and summarized description for each 
algorithm is provided below. 

 
3.3.1. CSR-scalar 
 

  
Fig. 2. Example of CSR sparse format and memory access 
pattern of CSR-scalar. 
 

CSR is one of the most widely used sparse matrix 
format due to its wide applicability. The most straight 
forward CSR-based spMv algorithm is CSR-scalar. This 
algorithm assigns computation works of a row to each 
thread. As shown in Figure 2, threads access entries that 
are apart from each other. While this non-coalescent 
memory access works well in CPU, it wastes the 
transfer capacity in GPU.  

3.3.2. CSR-2step 
 

Several modified CSR-based algorithm has been 
proposed to obtain better performance in GPU. The 
algorithm proposed by Gao et al. [3] separates spMv 
into 2 step as partial product step and summation step.  
Fully coalescent memory access is achieved in partial 
production step. In this work, this algorithm will be 
referred as ‘csr-2step’.  
 
3.3.3. SELL-P spMv 
 

Anzt et al. [4] proposed spMv algorithm based on 
SELL-P format which is extension of SELL format. 
This algorithm will be referred as ‘sellp’ in this work. 
SELL slices the matrix into blocks of rows and pads the 
rows with zeros to achieve same length among rows in 
the same block. Since the data is stored in column major 
order, natural coalescent memory access in spMv is 
achieved. But overhead cost can be caused in SELL 
format because padded zeros have to be processed too.   
 
3.2. Minimization of overhead communication cost 
 

Computation cost can be categorized into arithmetic 
cost and communication cost. Communication cost 
includes all types of data movements. In heterogeneous 
computing platform composed by CPUs and GPUs, 
overhead communication cost is caused by data transfer 
and synchronization between a CPU and a GPU. 
Usually these overhead communication costs are heavy.  

Iterative solvers require enormous communications 
between processor units while the amount of arithmetic 
work per communication is small. When considering the 
extremely high flop/s of GPU and heavy overhead 
communication cost, runtime of GPU-based iterative 
solver is dominated by communication cost.   

To minimize the overhead communication cost, all 
operations in the pBiCGSTAB algorithm are moved to 
the GPU in this work. Though some operations like 
reduction algorithm in the dot product or operations 
with scalar variables are slower on GPU, overall 
performance is improved. Only one data transfer is 
remained per an inner iteration, the residual error 
norm 0r , which is inevitable for convergence check.  

The Gauss-Seidel group sweep scheme, which is 
explained in 2.3., provides great reduction of arithmetic 
cost. However communication cost increases since this 
scheme solves small linear systems for each group 
rather than solve a large linear system relating all groups. 

The performances of Gauss-Seidel group sweep and 
explicit solution scheme are compared in 4.3. 

 
3.3. Approximate inverse preconditioner 
 

nTRACER has employed block Incomplete LU 
(BILU) preconditioner that is well customized to CMFD 
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problem. However triangular solve required to applicate 
ILU-type preconditioner is naturally sequential. Though 
several methods exist to achieve parallelism in 
triangular solve, the scalabilities of these methods are 
limited that utilizing massive parallelism of GPU is 
usually impossible. So another type of preconditioner 
called sparse approximate inverse (SPAI) is used for 
GPU platform. SPAI approximates inverse of matrix 
A in the linear system =Ax b  by Frobenius norm 
minimization for prescribed sparsity pattern S : 
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where jK , je  are j-th column of preconditioner and 

identity matrix respectively [5]. As SPAI approximates 
the inverse of coefficient matrix, application of it in 
BiCGSTAB algorithm can finished by a spMv which is 
naturally parallelizable.  

 
3.4. Single precision arithmetic 
 

Usual commercial GPUs are specialized for single 
precision arithmetic.  But round-off error   accumulated 
in iterative calculation can limit the accuracy of solution 
with single precision. The strategy called ‘iterative 
refinement’ is employed to use single precision 
arithmetic for linear system solution on GPU with same 
level of accuracy as double precision calculation [6]. 

 
4. Numerical Experiment Results 

 
4.1. Experimental setup 
 
Table 1. Hardware specifications. 

 Model SP 
Gflop/s 

DP 
Gflop/s 

Band 
width 
(GB/s) 

CPU Intel® i7-6700 108.8 54.4 34.1 
GPU Radeon R9 280x 4096 1024 288 

 
Table 2. Properties of the test matrices. 

CASE #group NNZ ( 310× ) #row( 310× ) NNZ/row 
C5G7 7 590 73 8.1 

VERA#4 47 3,761 153 24.6 
VERA#5 47  26,928 1,098 24.5 

 
The heterogeneous system which combines a CPU 

and a GPU is set to obtain experimental results. The 
theoretical peak processing power and memory 
bandwidth of the processors are shown in Table 1.  

Benchmark problems with different properties are 
chosen as test problems to observe performance 
tendency of algorithms [7, 8]. Table 2 shows properties 
of test problems. For VERA #4-5 case, GC CMFD 
calculation is carried out with 8 condensed groups. The 
performance for VERA #5, which is realistic 2D core 

problem, will be the final performance criteria of new 
GPU-based iterative linear system solution. VERA #5  
is practically the largest problem handled by single GPU 
in realistic application, because the 3D core problem 
will parallelized into planes in multi-GPU system. The 
outer iteration convergence tolerance is set as 0.1 for 
MG CMFD and 0.2 for GC CMFD. The inner iteration 
convergence tolerance is set as 0.01.  
 
4.2. spMv performance comparison 
 
Table 3. Storage overhead of SELL-P format. 

 C5G7 VERA#4 VERA#5 
SELL-P NNZ ( 310× ) 748 4,024 28,906 

overhead/NNZ (%) 27 7.0 7.3 
 

  
Fig. 3. Estimated flop/s of spMV algorithms.   
 

Table 3 shows the storage overhead caused by the 
SELL-P format. The arithmetic cost of the spMv is 
proportional to the number of nonzero entries (NNZ). 
Since NNZ per row is similar in same group, small 
number of group causes discrepancy among row lengths 
in each block of SELL-P. As a result, sellp algorithm 
requires 27% more flop in C5G7 problem while it 
requires 7% more flop with VERA cases. Figure 3 
shows performance comparison results of spMv 
algorithms. Estimated flop/s in figure 3 only counts 
effective flop and neglects additional arithmetic works 
in sellp algorithm. Despite storage overhead, sellp 
outperforms CSR-based algorithms. When see the 
difference between problems, the performance of sellp 
is improved with large NNZ per row while csr-scalar 
shows opposite tendency. But even in the C5G7 case, 
which has very sparse matrix due to small number of 
group, the performance of sellp is superior to CSR-
based algorithms. 

 
4.3. Calculation scheme comparison 
 

The performance of Gauss-Seidel group sweep and 
explicit solution scheme is evaluated by the computation 
time required for linear system solving (Ax=b time) in 
one CMFD calculation. Table 4 shows the performance 
comparison results. In given computing system, explicit 
solution is superior to Gauss-Seidel group sweep 
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scheme due to smaller overhead communication cost, 
although total flop count is larger with explicit solution. 
When see the tendency, Gauss-Seidel scheme has 
advantage in problem with large geometry and many 
number of group that has relatively large arithmetic 
work per communication. But even in VERA#5, which 
is practically the largest problem, explicit solution 
shows better performance. When considering explicit 
solution will be benefitted from high-end GPU with 
higher throughput, which reduces time for arithmetic 
work, explicit solution is more suitable for GPU-based 
solution. 

 
Table 4. Calculation scheme comparison results. 

CASE #outer 
iteration 

Flop count 
( 910× ) 

Ax=b time 
(s) 

C5G7 G-S. 8 0.32 0.16 
explicit 9 0.72 0.10 

VERA #4 G-S. 7 0.65 0.83 
explicit 7 3.42 0.19 

VERA #5 G-S. 10 7.07 2.0 
explicit 7 26.0 0.95 

 
4.4. Performance of GPU-based solution 
 
Table 5. VERA#5 calculation results. 

 CPU CPU+GPU 
# of MOC (# of CMFD) 3 (4) 3 (4) 

# MG outer iter. 32 31 
# GC outer iter. 185 141 

flop count ( 910× ) 22 208 
Preconditioner construction (s) 0.11 4.39 

Ax=b time (s) 30.38 8.02 

 
The performance of GPU-based CMFD linear system 

solution and conventional CPU-based sequential 
nTRACER CMFD linear system solution are compared. 
GPU-based solver uses explicit scheme with SPAI 
preconditioner while conventional solver uses Gauss-
Seidel group sweep and BILU preconditioner. VERA 
#5 problem is solved for comparison. Table 5 shows the 
comparison results. In this work, every parts of CMFD 
calculation except linear system solving is done in 
sequential environment. Due to heavy construction cost 
of SPAI, time for preconditioner construction is 
increased in GPU-based solution. Since SPAI requires 
more inner iteration than BILU preconditioner and 
explicit solution requires more flop than Gauss-Seidel 
group sweep, flop count is much larger with GPU-based 
solution. Total flop required until convergence is about 
9 times larger with GPU-based solution. In spite of flop 
amount, the Ax=b time of GPU-based solution is 
reduced to 26% level of conventional solution.  

 
5. Conclusion 

 
GPU-based pBiCGSTAB solver is constructed to 

accelerate CMFD calculation in nTRACER. The 

evaluation of spMv algorithms in GPU shows sellp 
algorithm which allows fully coalescent memory access 
outperforms other algorithms. Fully coalescent memory 
access maximizes data transfer per cycle on GPU. In 
addition, explicit solution of whole linear system shows 
better performance than Gauss-Seidel group sweep on 
GPU due to the overhead cost caused by communication 
between CPU and GPU. Both sellp and explicit solution 
increases the total arithmetic cost when compared to 
conventional algorithms. These results show that the 
performance of Krylov iterative solver in parallel 
heterogeneous system is determined by communication 
cost rather than arithmetic cost.  

 The resulted GPU-based solver reduces CMFD 
linear system solving time to roughly 26% in 2D core 
problem, though the total flop count is about 9 times 
larger than the conventional solution. However this 
research is limited on single GPU calculation on single 
plane, research on multi-GPU calculation on 3D 
problem is required as future research.  
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