Analyses of the B&W-1810 and KRITZ-2 Critical Experiments with nTRACER

May 17, 2018

Sori Jeon and Han Gyu Joo Reactor Physics Laboratory Seoul National University

Contents

□ Introduction

- nTRACER Direct Whole Core Calculation Code
- Need for Experimental Core Benchmarks Problems

□ Analysis of the B&W-1810 Critical Experiment

- Overview of the Experiments
- Modeling of the Cores
- Comparison with References

□ Analysis of the KRITZ-2 Critical Experiment

- Overview of the Experiments
- Modeling of the Cores
- Comparison with References

□ Conclusions

Introduction

□ nTRACER Direct Whole Core Calculation Code

- Calculation features
 - Planar MOC based 2D/1D calculation
 - Sub-pin level transport calculation
 - On the fly resonance self-shielding
- Validation through actual core calculation
 - OPR1000, AP1000 and APR1400 PWR cores
 - BEAVRS and VERA benchmark problems

-1.02 -2.02

□ Need for Experimental Core Benchmarks Problems

- Simulation capability of nTRACER for the commercial reactors has been validated consistently
- Validations on various core configurations are still required

□ Purpose of the Work

- Verifying the simulation capability and extending the applicability of nTRACER by performing calculations on the critical experiment benchmarks
 - B&W-1810 and KRITZ-2 critical experiments were analyzed

Analysis of the B&W-1810 Critical Experiments

Overview of B&W-1810 Experiments

□ Core Configurations

Number of	Core 1	Core 5	Core 12	Core 14
2.46w/o U-235 fuel pins	4808	4780	3920	3920
4.02w/o U-235 fuel pins	0	0	888	860
Gd fuel pins	0	28	0	28
Water holes	153	153	153	153
Boron (ppm)	1337.9	1208.0	1899.3	1653.8

Modeling of B&W-1810 Cores

□ McCARD Core Modeling

- Radial geometry
 - Modeled up to the core tank
 - 8 fuel assemblies with 15x15 lattice, 5 additional fuel assemblies, and 6 moderator blocks
- Axial geometry
 - Modeled from the aluminum base plate to the top of fuel rods
 - Parts of fuel rods above the water level modeled
- * McCARD parameters : 2,000,000 particles, 400/800 inactive/active cycles continuous energy library based on ENDF/B-VII.0

□ nTRACER Core Modeling

- Radial geometry
 - Modeled up to the assemblies which have fuel rods
 - Core tank was not modeled due to modeling complexity and its negligible effect on solution (~6 pcm)
- Axial geometry
 - Modeled from the aluminum base plate to the water level
 - Only parts of fuel rods below the water level modeled
- nTRACER parameters : 0.05cm ray spacing, 16/4 azimuthal/polar angles in the octant of solid angle, P2/P0 scattering, 47 group RPL cross section library based on ENDF/B-VII.0

Comparison with Measurements

Good Agreement with Measurements

- With P0 scattering
 - Difference of k-eff from criticality ≤ 266 pcm
 - Abs. ΔP : RMS \leq 0.35 %, Max \leq 1.13 % (for the central assembly)
- With P2 scattering
 - Difference of k-eff from criticality \leq 64 pcm
 - Abs. ΔP : RMS \leq 0.27 %, Max \leq 0.60 % (for the central assembly)

Core	Cal.	k-eff	∆ρ (pcm)	Abs. RMS (%)	Abs. Max (%)
Coro 1	P2	1.00004	4	0.19	0.60
Cole I	P0	0.99801	-199	0.28	1.10
Coro 5	P2	0.99936	-64	0.22	0.60
Cole 5	P0	0.99764	-236	0.29	1.05
Core 10	P2	0.99992	-8	0.21	0.50
	P0	0.99734	-266	0.29	1.13
Coro 14	P2	0.99961	-39	0.27	0.60
Core 14	P0	0.99742	-258	0.35	0.90

McCARD parameters : 2,000,000 particles, 400/800 inactive/active cycles Std. : 2pcm

Power Distributions in McCARD

□ Power Differences for the Full Core (%)

- Measured data were given for pins in the central assembly
- McCARD solutions were utilized to assess the power distribution of the full core

Analysis of the KRITZ-2 Critical Experiments

□ Core Configuration

- Cylindrical outer vessel and square inner vessel
- Space between outer vessel and inner vessel filled with saturated vapor (~ 245°C)
- Top portions of the fuel rods extended in steam region
- Same thickness of water reflector on west side and south side
- Fuel rods supported by cylindrical stainless steel

* McCARD model was made same with the benchmark model

SNURPI

Overview of the KRITZ-2 Critical Experiment

Description of the Experiment

- Core cases analyzed
 - Core 1 : 44x44 UO₂ fuel at room temperature and elevated temperature
 - Core 13 : 40x40 UO₂ fuel at room temperature and elevated temperature
 - Core 19 : 25x24 MOX fuel at room temperature and elevated temperature
- Boron concentrations and water level adjusted to meet critical condition at room temperature and elevated temperature (~245°C)
- Critical level was measured at low power (~ 10W)
- k-eff and power distributions for some specific locations are given
 - For critical experiments, the difference of k-eff is difference from criticality
 - Only several pins were measured which were located in specific position; therefore, the comparison with experimental data were done for only these specific pins
 - McCARD results were used as reference for comparing the power distributions for all pins

Modeling of the KRITZ-2 Cores

□ Details of the nTRACER Modeling

- Geometry in nTRACER is composed of square pins where it is hard to model the cylindrical outer vessel and tank
 - Cylindrical outer vessel and pressure tank are neglected.
- Vapor region above the water level or between inner vessel and outer vessel makes trouble in nodal and CMFD solver
 - Axially, only the parts of the fuel rods below water level are modeled
 - Radially, only a little part of vapor region are modeled to complete the proper number of pins

* nTRACER parameters : 0.05cm ray spacing, 16/4 azimuthal/polar angles, P2/P0 scattering, 47 group RPL cross section library based on ENDF/B-VII.0

Axial Cross Section

Modeling of KRITZ-2 Cores

□ Assessment of the Modeling Bias

- Performed calculations on three cases
 - Case 1 : fully explicit (McCARD) model, with McCARD code
 - Case 2 : simplified (nTRACER) model, with McCARD code
 - Case 3 : simplified (nTRACER) model, with nTRACER

- By comparing Case 1 and 2, errors from the modeling difference can be evaluated
- By comparing Case 2 and 3, errors from the **code** can be evaluated

□ Difference of k-eff from Criticality (pcm)

• Case2 and 3 which use simplified model (nTRACER model) show extremely large underestimations especially in core1 and core13

		Case 1	Case 2	Case 3	
		(explicit model,	(simplified model,	(simplified model,	
		with McCARD)	with McCARD)	with nTRACER)	
Coro 1	cold	-137	-1286	-1438	
Core	hot	-338	-919	-1031	
Coro 13	cold	93	-262	-274	
COIE 13	hot	-72	-458	-577	
Core 19	cold	446	-76	-16	
	hot	84	-211	20	

□ Comparison of Pin Powers (Cold)

- Most pins show errors within 3.0% except two kinds of pins
 - 1) peripheral pins which have low reference power
 - 2) pins measured with high uncertainty due to bent rod or inhomogeneity in material

□ Difference of k-eff from Criticality (pcm)

• Case2 and 3 which use simplified model (nTRACER model) show extremely large underestimations especially in core1 and core13.

		Case 1	Case 2	Case 3	
		(explicit model,	(simplified model,	(simplified model,	
		with McCARD)	with McCARD)	with nTRACER)	
Coro 1	cold	-137	-1286	-1438	
Core	hot	-338	-919	-1031	
Coro 12	cold	93	-262	-274	
COIE 13	hot	-72	-458	-577	
Core 19	cold	446	-76	-16	
	hot	84	-211	20	

Comparison of Pin Powers (Hot)

- Most pins show errors within 3.0% except two kinds of pins
 - 1) peripheral pins which have low reference power
 - 2) pins measured with high uncertainty due to bent rod or inhomogeneity in material

Error due to Modeling

□ Comparison of k-eff

- Differences between case 1 and 2 are much larger than those between case 2 and 3
 - Simplifications of the model in nTRACER have a big impact on the results
 - This tendency is more evident when there is more part of fuel rods that is not designed axially (e.g. Core 1 at cold condition in which the ratio of fuel rods that was not designed is 82.12% has difference of k-eff over 1000pcm)

	Δk -eff (ref. vs), pcm								
Case	Error due to radial simplification		Error due to axial simplification		Case 1 vs Case 2 (Error due to Modeling)		Case 2 vs Case 3 (McCARD vs nTRACER)		
	Cold	Hot	Cold	Hot	Cold	Hot	Cold	Hot	
Core 1	-17	-120	-1131	-421	-1149	-581	-152	-112	
Core 13	-1	-25	-353	-362	-355	-386	-12	-119	
Core 19 Height of fuel rods design	-16 ed(cm) and un-c	-77 Jesigned length	-504 ratio(%)	-191	-522	-295	60	231	

Casa	McCARD mod	el (Case 1), cm	nTRACER mod	del (Case 2, 3), cm	Neglected length ratio, %		
Case	Cold	Hot	Cold	Hot	Cold	Hot	
Core 1	365.00	365.92	65.28	105.52	82.12	71.16	
Core 13	365.00	365.89	96.17	110.96	73.65	69.67	
Core 19	123.20	123.20	66.56	100.01	45.97	18.82	
			Case1 : Explicit model, with McCARD code Case2 : Simplified model, with McCARD code SNU				

□ Larger Errors in Core 19 with MOX Fuel

□ Good Agreement with McCARD in P2

- Difference of k-eff from criticality ≤ 231 pcm
- Abs. ΔP : RMS \leq 0.46 %, Max \leq 1.01 %
- At cold condition

At hot condition

Core	Cal.	k-eff	Del. Rho (pcm)	Abs. RMS (%)	Abs. Max (%)	Core	Cal.	k-eff	Del. Rho (pcm)	Abs. RMS (%)	Abs. Max (%)
Core 1	McCARD	0.98714				Core 1	McCARD	0.99081			
44x44	P2	0.98562	-156	0.12	0.41	44x44	P2	0.98969	-114	0.32	0.75
UO ₂	P0	0.98491	-229	0.19	0.64	UO ₂	P0	0.98860	-226	0.44	1.50
Core 13	McCARD	0.99738				Core 13	McCARD	0.99542			
40x40	P2	0.99726	-12	0.18	0.54	40x40	P2	0.99423	-120	0.32	0.77
UO ₂	P0	0.99616	-123	0.25	0.60	UO ₂	P0	0.99337	-207	0.40	0.90
Core 19	McCARD	0.99924				Core 19	McCARD	0.99789			
25x24	P2	0.99984	60	0.40	0.78	25x24	P2	1.00020	231	0.46	1.01
MOX	P0	0.99955	31	0.41	0.80	MOX	P0	1.00034	245	0.66	1.50

Comparison of Power Distributions

* Absolute Error Distributions of Pin Power in Core 13 (%)

Err. in Core 1 & 13 < Err. in Core 19

SNURPL

Conclusions

□ Verification of Solution Capability of nTRACER for Experimental Reactors

- Calculations for the B&W-1810 and KRITZ-2 critical experiments were performed with nTRACER and compared with measurements and McCARD
- nTRACER yielded good agreement with the reference
 - In the B&W-1810 critical experiment
 - $\Delta k_{eff} \le 64$ pcm (from criticality)
 - nTRACER vs. measurements for the center assembly, RMS $\leq 0.3\%$, Max $\leq 0.6\%$
 - nTRACER vs. **McCARD** results for the **full core**, RMS $\leq 0.5\%$, Max $\leq 1.6\%$
 - In the KRITZ-2 critical experiment
 - $\Delta k_{eff} \leq 231 \text{ pcm}$ (from McCARD result)
 - nTRACER vs. **measurements**, relative errors in most pins < 3.0%
 - nTRACER vs. **McCARD** results with the **same model**, RMS $\leq 0.5\%$, Max $\leq 1.0\%$

Required Improvement

- Substantial discrepancy due to negligence of void region in KRITZ-2 experiments
 - Especially in Core 1 with the negligence ratio of axially undersigned fuel rods larger than 70%, the differences of k-eff were over 1000 pcm
- Necessity of void region treatment for more rigorous verification

Thank you for your attention.

