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1. Introduction 

 
As the operation period of Nuclear Power Plants 

(NPPs) is getting longer, it is important to consider 

ageing effect. There are ageing management program 

such as probabilistic fracture mechanics. However, 

because it is based on the model derived from 

experimental data, it is hard to consider specific 

conditions of target components or systems. 

To complement the limitation, prognostics can be 

applied. Prognostics predicts time to failure by analyzing 

monitoring data of target components as well as   

historical data. In other words, it updates historical data 

or existing model by reflecting specific condition of 

individual components so that future ageing degradation 

can be assessed more accurately. 

Prognostics can be divided into model-based and data-

driven methods depending on the usage of degradation 

model. In this paper, we performed prognostics for 

virtual steam generator tube with Monte Carlo 

Simulation (MCS) as a data-driven method and Particle 

filter as a model-based method, and performed 

comparative analysis on those two methods. 

 

2. Methods 

 

2.1 Prognostics with Monte Carlo Simulation (MCS) 

 

MCS for prognostics predicts time to failure by 

performing state transition simulation using state 

transition probabilities of a target component. The state 

is assumed as growth rate of ageing degradation, and the 

state transition probabilities can be obtained from 

historical failure data based on Markov Chain model. 

Markov Chain model is based on assumption of 

Markov process. The assumption is that present state 

includes the information of previous states and therefore 

 

next state is only dependent on present state. For Markov 

Chain model, the state transition probabilities can be 

represented as a matrix as shown in equation 1. In the 

matrix, a row means current state, and a column means 

state at next step. Therefore the element of the matrix 

means state transition probability that current state 

changes to other states at next step. For example, in 

equation 1, 𝑝2𝑁 means probability that state ‘2’ at current 

step changes to state ‘𝑁’ at next step. With the matrix, 

state transition simulation is performed by MCS. 
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The state at next step can be decided by inverse 

transform sampling method as shown in figure 1. It 

samples random number from uniform distribution using 

MCS, and then next state is decided by mapping the 

sample to cumulative density function (CDF) of the 

current state’s transition probability. This process is 

repeated until an extent of degradation reaches to 

threshold. Because the state is assumed as growth rate of 

ageing degradation, the extent of degradation can be 

estimated by cumulating growth rate of a state at every 

step. The state transition simulation is repeated by MCS 

with massive samples and then time to failure 

distribution is obtained. 

 

2.2 Particle filter 

 

Particle filter as one of recursive filter is similar to 

Kalman filter. But, it has higher versatility, because it 

uses samples (particles) for estimating distribution, it can 

be applied to nonlinear model. 

As a recursive filter, particle filter predicts state of 

current step with information of previous step as a prior 

and updates the predicted state by reflecting 

measurement data of current step as a likelihood. 

Updated state that is posterior of current step is used as 

prior at next step. It is same as performing Bayesian 

update sequentially. Meanwhile, Particle filter as a 

representative model-based prognostics method needs 

degradation model and the model parameters are updated 

same as the state. It makes possible to predict more 

accurately reflecting current condition of target 

component on the model derived from historical data. 

Particle filter for prognostics can be divided into four 

major steps; prediction, updating, resampling, and 

prognosis. 
Fig. 1. Inverse transform sampling 
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In the prediction step, the state is predicted with the 

information of previous step. First, for the model 

parameter 𝜃 , n  of particles are generated from 

f(𝜃𝑘|𝜃𝑘−1). This means that the model parameter at k 

step is estimated from f(𝜃𝑘−1) which is a distribution of 

the model parameter at k − 1 step. Likewise, for the state 

𝑠 , n of particles are generated from f(𝑠𝑘|𝑠𝑘−1). Then, 

propagated state 𝑠 at k step is obtained by degradation 

model composed of model parameter 𝜃𝑘 

In the update step, measurement data 𝑦𝑘 is reflected. 

First, likelihood of 𝑦𝑘  for the 𝑠𝑘  is obtained. Then, the 

likelihood is normalized to make its sum is equal to one 

and used as a weight at resampling step. 

In the resampling step, the particles of 𝑠𝑘  and 𝜃𝑘  is 

resampled by the weight. The weight is transformed to 

CDF and resampling is performed by inverse transform 

sampling. Resampled 𝑠𝑘  and 𝜃𝑘  are posterior of k step 

and used as prior at k + 1 step. 

The above process is carried out until current time 

when the measurement is finished and the future 

degradation state is extrapolated. There is no more 

update and the current state is propagated by finally 

updated degradation model until it reaches to threshold. 

With the proportion of particles that is reaches to 

threshold, time to failure distribution can be obtained. 

 

2.3 Steam Generator Tube Rupture data 

 

With those two prognostics methods, we performed 

prognostics for Steam Generator Tube Rupture (SGTR) 

as a case study. Steam generator is located at boundary 

between primary side and secondary side of Pressurized 

Water Reactor (PWR). It changes secondary side’s feed 

water to steam by transferring heat of primary side’s 

coolant. It removes decay heat of reactor core by the heat 

transfer and prevent leakage of radioactive materials. 

Removing decay heat and preventing leakage of 

radioactive materials are essential part for nuclear safety. 

Because it is not possible to get actual steam generator 

tube data, we obtained simulation data from a virtual 

steam generator by using PASTA (Probabilistic 

Algorithm for Steam generator Tube Assessment) 

program. PASTA performs assessment of integrity of 

steam generator tube. We obtained 130 data sets that is 

burst probability over time. Burst probability is obtained 

at every EFPY (Effective Full Power Year, 1 EFPY =18 

months). We regarded the tube is ruptured when the burst 

probability exceeds 40% and used the value as a 

threshold.  100 sets are assumed as historical failure data 

and used for training, and remaining sets are assumed as 

monitoring data and used for testing. We divided testing 

sets into 4 cases according to the amount of monitoring 

data to show the characteristic of prognostics that the 

accuracy increases, as more monitoring data is updated. 

 

3. Results 

 

3.1 Prognostics with Monte Carlo Simulation 

 

As mentioned above, the data is burst probability over 

time and has continuous value. For obtaining the state 

transition probability, the raw data need to be changed 

into discrete value representing the state. First, because 

the state is assumed as growth rate of degradation, we 

changed raw data into growth rate of degradation ∆𝑑, 

and classified it as the state according to equation 2. 

 

 s = {

1              0 ≤ ∆𝑑 < 0.01
2        0.01 ≤ ∆𝑑 < 0.02

⋮
9        0.08 ≤ ∆𝑑 < 0.09

 (2) 

 

Then, from the training data, we obtained state 

transition matrix and performed prognostics using MCS 

for each cases as shown in figure 2. 

 

3.2 Particle filter 

 

Particle filter is performed based on a degradation 

model. In this paper, Paris’ law is assumed as a 

degradation model. Equation 3 shows Paris’ law. Where, 

𝑎 is crack length, 𝐶  and 𝑚 are constants that depend on 

the material, environment and stress ratio, ∆𝑘  is the 

range of the stress intensity factor, and ∆𝜎 is stress range. 

 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝑘)𝑚, ∆𝑘 = ∆𝜎√𝜋𝑎 (3) 

 

For particle filter, initial distribution of model 

parameter is needed, and it can be obtained from training 

data by fitting the data to the degradation model. For 

fitting, we obtained simple linear equation as the natural 

logarithm of the model. Model parameter 
𝑚

2
 as a slope 

and ln 𝐶 (∆𝜎√𝜋)𝑚 as an intercept of the equation 4 are 

obtained for each training sets.  

 

 

ln
𝑑𝑎

𝑑𝑁
= ln 𝐶 + 𝑚 ln(∆𝜎√𝜋𝑎) 

= ln 𝐶 (∆𝜎√𝜋)𝑚 +
𝑚

2
ln 𝑎 

= m′ ln 𝑎 + C′ 

(m′ =
𝑚

2
, C′ = ln 𝐶 (∆𝜎√𝜋)𝑚) 

(4) 

 

Then, we assumed the distribution of the parameter as 

normal distribution and obtained mean and standard 

deviation as shown in table 1. 

 

Table I: Mean and standard deviation of model parameters 

 m′ C′ 

μ 0.671 -1.745 

σ 0.049 0.156 
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Fig. 2. Results of prognostics using MCS 

 

 
Fig. 3. Results of prognostics using Particle filter 

 

For particle filter as a recursive filter, the degradation 

model needs to be transformed into recurrence relation 

that current state is depend on previous state. Paris’ law 

can be transformed into recurrence relation as equation 

5. Then, we performed prognostics using particle filter 

for each case as shown in figure 3. 

 

 
𝑎𝑘 = 𝐶𝑘(∆𝜎√𝜋𝑎𝑘−1)𝑚𝑘𝑑𝑁 + 𝑎𝑘−1 

= exp(C′
𝑘) 𝑎𝑘−1

𝑚′𝑘𝑑𝑁 + 𝑎𝑘−1 
(5) 

 

3.3 Comparison between MCS and Particle filter 

 

Table 2 shows the results of the two prognostics 

methods. Error means difference between the results and 

actual time to failure of raw data (=16.559 EFPY). As 

shown in figure 2~3 and table 2, either methods show 

that the error and variance decrease as the amount of 

monitoring data increase. 

 

Table II: Comparison of results 

Case 
MCS Particle filter 

μ σ Error μ σ Error 

1 11.075 1.537 0.331 20.598 3.194 0.244 

2 13.833 1.517 0.165 18.161 2.184 0.097 

3 15.234 1.06 0.08 17.210 1.173 0.039 

4 15.648 0.563 0.055 16.279 0.493 0.017 

 

Though the two methods show similar trend in error 

and variance, particle filter has lower error. For variance, 

particle filter has larger value with a few monitoring data 

though, it decreases sharply with an increase of 

monitoring data and for the case 4 particle filter has 

lower variance. 

MCS as a data-driven method can be performed 

without degradation model, if there are sufficient data 

and therefore, has higher versatility than model-based 

method. However, it probably needs preprocessing and 

from it, information of raw data can be lost. 

If there are degradation model, model-based 

prognostics is applicable and it has higher accuracy. 

However, for the Particle filter, degradation model needs 

to be transformed into recurrence relation. Thus, when 

there is no initial distribution of model parameter and the 

model is complex, it is hard to assume the initial 

distribution. 

 

3. Conclusions 

 

In this paper, we performed prognostics for SGTR 

with MCS as a data-driven method and Particle filter as 

a model-based method. In terms of accuracy, Particle 

filter shows better results. However, for the versatility, 

MCS is better, because degradation model and initial 

distribution of the model parameter is essential for the 

Particle filter. In terms of accuracy and versatility, two 

methods have strengths and limitations, therefore it is 

necessary to choose the appropriate method depending 

on the circumstances. 

For the further study, we will evaluate the 

performance of two method with other various aspects 

and study on the way to improve the performance. 
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