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1. Introduction 
 

The radial MOC and the axial Pn coupled calculation 
[1,2,3] is widely used to obtain the sub-pin level whole 
core transport solution which requires too much 
consuming time and tremendous memory. To resolve 
these problems, the domain decomposition scheme is 
commonly applied to the whole core transport code. 
DeCART applies the MPI parallel computation to the 
axial domain to reduce the memory requirement to the 
number of axial planes, and the OpenMP to the radial 
domain to increase the computational speed. MPACT 
applies the MPI parallel computation to the axial and 
the radial domain, and shows good computational speed. 

In this paper, the massive parallel computation by 
introducing the axial and the radial domain 
decomposition scheme is applied to the whole core 
transport calculation. By introducing the massive 
parallel computation, the calculation can be parallelized 
up to the one node calculation per CPU. This paper 
analyze the computational performance of the massive 
parallel computation. 

 
2. Massive Parallelization 

 
2.1 Domain Decomposition and Processor Grouping 

 
To achieve the massive parallel computation, the 

plane-wise and the assembly-wise domain 
decomposition scheme is introduced. By this scheme, 
the least domain assigned to one CPU can be reduced to 
one assembly node.  

Due to the introduction of the assembly-wise domain 
decomposition, the main change is that the ray tracing 
scheme based on the core ray is modified to the 
assembly ray basis. In the core ray base ray tracing, the 
incoming angular flux at the core boundary go through 
the core domain by the linked modular ray and finishes 
at the other core boundary. However, in the assembly 
base ray tracing, the incoming angular flux at the 
assembly boundary should finish at the other assembly 
boundary and transfer the outgoing angular flux to the 
adjacent assembly. Therefore, the assembly base ray 
tracing requires the incoming angular flux information 
by the communication with the neighboring assemblies, 
and transfers the outgoing angular flux data to the 
neighboring assemblies. 

For an efficient control of processors involving in 
whole core transport calculation, the processor 
grouping is performed in two ways. The first grouping 
is for communication between the radial neighboring 

nodes which is frequently required in the radial MOC 
and the whole CMFD calculation. The second grouping 
is for communication between the axial neighboring 
nodes which is required in the axial Pn and the whole 
CMFD calculation. The new processor groups are 
named as MPI_PL_WORLD and MPI_ASY_WORLD. 
In the new processor groups, the data gathering and the 
reduction is performed first through 
MPI_ASY_WORLD by assembly Master, and next 
through MPI_PL_WORLD consisting of assembly 
Masters by whole Master. 

 

 
 

Fig. 1. Communication Domain Splitting and Processor 
Grouping 

 
2.2 Communication in the MPI_PL_WORLD 

 
The communication between assemblies occurs when 

performing the ray tracing for MOC equation and 
performing the node sweeping for CMFD equation. The 
MOC equation requires the incoming angular flux 
solution of the neighboring node. Therefore, the 
outgoing angular fluxes at assembly boundaries are 
stored every iteration, and then transferred to the 
neighboring assembly. The CMFD equation requires 
the scalar flux of the neighboring nodes. The data 
communication is performed at each inner iteration. 

The data communication with the neighboring nodes 
is performed through the MPI_PL_WORLD. Figure 2 
shows the communication order in the 
MPI_PL_WORLD. For Cartesian geometry, maximum 
4 communications with the 4 neighboring nodes are 
required to obtain the neighboring node data. If the sum 
of the row and column assembly index is even number, 
the processor determines the communication order 
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clockwise from the bottom surface, and receives the 
data first and sends next. Otherwise, the processor 
determines the communication order clockwise from 
the top surface, and sends the data first and receives 
next. 

The data communication occurs simultaneously 
according to the communication order. 

 

 
Fig. 2. Communication Order in MPI_PL_WORLD 

 
2.3 Communication in the MPI_ASY_WORLD 

 
The communication between planes occurs when 

performing the node sweeping for the axial Pn and for 
the CMFD equations. The Pn equation requires the flux 
moment solutions of the neighboring planes, and the 
flux moment solutions of a plane are transferred to the 
neighboring planes every inner iteration. The CMFD 
equation requires the scalar flux of the neighboring 
planes. The data communication is performed after one 
inner iteration. 

 

 
 

Fig. 3. Communication Order in MPI_ASY_WORLD 
 
The data communication with the neighboring planes 

is performed through the MPI_ASY_WORLD. Figure 3 
shows the communication order in the 
MPI_ASY_WORLD. In the axial direction, maximum 
2 communications with the 2 neighboring planes are 
required to obtain the neighboring plane data. If the 

plane index is odd number, the processor communicates 
with the lower plane first and next with the upper plane, 
and receives the data first and sends next. Otherwise, 
the processor communicates with the upper plane first 
and next with the lower plane, and receives the data 
first and sends next. 

The data communication occurs simultaneously 
according to the communication order 

 
3. Performance Examination 

 
The performance of the massive parallel computation is 
examined first for the C5G7 2-D and 3-D problem, and 
next for SMART quarter core test problem. In the 
evaluation, the massive parallel computation is also 
compared with the OpenMP based radial parallel 
computation. In the examination, 0.02 cm for ray 
spacing, 32 azimuthal angles, and 2 polar angles are 
used. 
 
3.1 C5G7 2-D Problems 

 
One assembly node computation per CPU is a target 

goal of the massive parallel computation scheme. 
Therefore, the target computing time is also the 
computing time for one assembly. The computational 
efficiency of the massive parallel computation is 
discussed in this aspect. 

 
Table Ⅰ: Computational Efficiency for C5G7-2D 

Benchmark Problem  
 Size Total CMFD MOC Comm* 
Time, 
sec 

FA 16.53 0.11 16.16 
OC 17.97 0.21 17.37 0.21 
QC. 17.91 0.23 17.35 0.21 
FC 18.14 0.37 17.25 0.38 

** OC 0.92 0.52 0.93 
QC 0.92 0.48 0.93 
FC 0.91 0.30 0.94 

* Communication 
** Efficiency = TSA/T, TSA=Time for FA 
OC: Octant Core, QC: Quarter Core 
FC: Full Core 
 
Table I shows the computation efficiency of the 

massive parallel computation. The C5G7 problem 
consists of total 36 assemblies with 16 fuel and 20 
reflector assemblies, respectively. Most of the 
computing time of more than 95 % is charged for MOC 
calculation. The parallel performance of MOC 
calculation shows good performance of about 0.93. 
However, the CMFD calculation shows less 
performance ranging from 0.52 to 0.30. The parallel 
performance is associated with the computing load and 
the number of communication. The CMFD calculation 
has lower computing load than the MOC calculation, 
but requires more frequent communication with the 
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neighboring node. Also the CMFD module requires 
more number of iterations according to the problem size. 
Those are the reasons for the degradation in the parallel 
efficiency of CMFD module to the MOC module. The 
total parallel efficiencies range from 0.92 to 0.91. 

 
3.2 C5G7 3-D Problems 

 
In the 3-D problem, it’s not easy to obtain the 

reference computing time for the single node where the 
axial Pn calculation is omitted. Therefore, the reference 
computing time is obtained instead for the single 
assembly which consists of 4 axial nodes by performing 
the parallel computation with 4 CPUs, the 
computational efficiency of the massive parallel 
computation is discussed by comparing with the single 
assembly calculation. 

Table II shows the computation efficiency of the 
massive parallel computation. In the table, the CMFD 
time includes the axial Pn computing time. As for the 2-
D problem, most of the computing time of more than 
90 % is charged for MOC calculation, which is less 
than 2-D case due to the burden for the axial Pn 
calculation. The parallel performance of MOC 
calculation shows good performance ranging from 1.00 
to 0.97. However, the CMFD calculation shows less 
performance ranging from 0.62 to 0.45. The axial Pn 
calculation shows the parallel performance ranging 
from 0.65 to 0.50 which are the better performance than 
the CMFD calculation.The total parallel efficiencies 
range from 0.98 to 0.86. 

 
Table Ⅱ: Computational Efficiency for C5G7-3D 

Benchmark Problem  
 Size Total CMFD Pn MOC Comm* 
Time, 
sec 

FA 19.37 1.63 1.37 17.46 0.08 
OC 19.72 2.61 2.12 16.70 1.42 
QC. 20.50 2.63 2.09 17.50 1.55 
FC 22.42 3.61 2.72 17.96 2.78 

** OC 0.98 0.62 0.65 1.05 
QC 0.94 0.62 0.66 1.00 
FC 0.86 0.45 0.50 0.97 

* Communication 
** Efficiency = TSA/T, TSA=Time for FA 
OC: Octant Core, QC: Quarter Core 
FC: Full Core 
 
Table III shows the computing time breakup when 

using OpenMP according to the number of threads with 
4 axial decomposition using MPI. For octant core 
problem, the total number of CPUs when using the 6 
threads is same CPUs with the massive parallelization 
scheme in Table II, and shows similar computational 
speed. For quarter core problem, the total number of 
CPUs when using the 9 threads is same CPUs with the 
massive parallelization scheme in Table II, and shows 
worse computational speed. The 12 threads is the limit 

number of threads in this computing environment. 
Therefore, for full core problem, the 12 threads is used 
and shows not good performance. By comparing Table 
III with Table II, it can be concluded that the MPI based 
massive parallelization shows better performance than 
using OpenMP in the computing time and in the 
utilization of computing environment. 

 
Table Ⅲ: OpenMP Performance with 4 Domain 

Decomposition for C5G7-3D Benchmark Problem, sec 
Size Thread Total CMF

D 
Pn MOC Comm* 

OC 12 13.94 2.62 1.67 9.51 0.18 
6 21.18 3.75 2.67 15.58 0.20 

QC 12 30.23 6.08 3.90 18.74 0.49 
9 35.60 6.49 4.30 23.79 0.45 

FC 12 133.29 26.08 16.62 61.08 1.53 
* Communication 
OC: Octant Core, QC: Quarter Core 
FC: Full Core 
 

3.3 Realistic Quarter Core 3-D Test Problems 
 
To examine the applicability of the massive 

parallelization, the realistic SMART quarter 3-D core 
problem is solved. The original problem which consists 
of 24 axial planes with 20 fuel planes and 4 reflector 
planes is modified to 14 plane problems with 10 fuel 
planes. This problem requires total 238 CPUs which is 
acceptable in this LINUX environment for the massive 
parallel computation. 

Table IV shows the computation efficiency of the 
massive parallel computation. As for the C5G7 problem, 
most of the computing time of more than 95 % is 
charged for MOC calculation. The parallel performance 
of MOC calculation shows good performance of about 
0.90. However, the CMFD calculation shows poor 
performance of about 0.32. The total parallel efficiency 
is about 0.80. 

 
Table Ⅳ: Computational Efficiency for Realistic 3-D 

Core Problem  
 Size Total CMFD Pn MOC 

+SG 
Comm* 

Time, 
sec 

FA 337.8 12.1 8.8 321.0 1.0 
OC 420.3 37.7 25.6 356.7 13.4 

** OC 0.80 0.32 0.34 0.90 
* Communication 
** Efficiency = TSA/T, TSA=Time for FA 
SG: Subgroup Calculation, OC: Octant Core 

 
4. Conclusion 

 
In this paper, the massive parallel computation is 
introduced to whole core transport calculation, the 
performance is examined for C5G7 2-D and 3-D 
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problems and for the realistic 3-D core problem. The 
goal of the massive parallelization in this paper is 
assign one 3-D node per CPU. The examination shows 
that the parallel efficiencies are 0.89 and 0.77 for 2-D 
and 3-D C5G7 problems, and 0.80 for the realistic 3-D 
core problem. These efficiencies are very good 
considering the number of CPUs attending the 
computations. Therefore, it can be concluded that the 
massive parallel computation works good for the whole 
core transport calculation. In the parallel efficiency, the 
CMFD and axial Pn calculation showed poor efficiency, 
and deteriorates the total efficiency. Therefore, more 
efficient parallel scheme needs to be developed in the 
future. 
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