
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

Massive Parallel Computation for an Efficient Whole Core Transport Calculation

Jin Young Cho* and Seungsu Yuk
Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Korea

*Corresponding author: yhchoi@kaeri.re.kr

1. Introduction

The radial MOC and the axial Pn coupled calculation
[1,2,3] is widely used to obtain the sub-pin level whole
core transport solution which requires too much
consuming time and tremendous memory. To resolve
these problems, the domain decomposition scheme is
commonly applied to the whole core transport code.
DeCART applies the MPI parallel computation to the
axial domain to reduce the memory requirement to the
number of axial planes, and the OpenMP to the radial
domain to increase the computational speed. MPACT
applies the MPI parallel computation to the axial and
the radial domain, and shows good computational speed.

In this paper, the massive parallel computation by
introducing the axial and the radial domain
decomposition scheme is applied to the whole core
transport calculation. By introducing the massive
parallel computation, the calculation can be parallelized
up to the one node calculation per CPU. This paper
analyze the computational performance of the massive
parallel computation.

2. Massive Parallelization

2.1 Domain Decomposition and Processor Grouping

To achieve the massive parallel computation, the

plane-wise and the assembly-wise domain
decomposition scheme is introduced. By this scheme,
the least domain assigned to one CPU can be reduced to
one assembly node.

Due to the introduction of the assembly-wise domain
decomposition, the main change is that the ray tracing
scheme based on the core ray is modified to the
assembly ray basis. In the core ray base ray tracing, the
incoming angular flux at the core boundary go through
the core domain by the linked modular ray and finishes
at the other core boundary. However, in the assembly
base ray tracing, the incoming angular flux at the
assembly boundary should finish at the other assembly
boundary and transfer the outgoing angular flux to the
adjacent assembly. Therefore, the assembly base ray
tracing requires the incoming angular flux information
by the communication with the neighboring assemblies,
and transfers the outgoing angular flux data to the
neighboring assemblies.

For an efficient control of processors involving in
whole core transport calculation, the processor
grouping is performed in two ways. The first grouping
is for communication between the radial neighboring

nodes which is frequently required in the radial MOC
and the whole CMFD calculation. The second grouping
is for communication between the axial neighboring
nodes which is required in the axial Pn and the whole
CMFD calculation. The new processor groups are
named as MPI_PL_WORLD and MPI_ASY_WORLD.
In the new processor groups, the data gathering and the
reduction is performed first through
MPI_ASY_WORLD by assembly Master, and next
through MPI_PL_WORLD consisting of assembly
Masters by whole Master.

Fig. 1. Communication Domain Splitting and Processor
Grouping

2.2 Communication in the MPI_PL_WORLD

The communication between assemblies occurs when

performing the ray tracing for MOC equation and
performing the node sweeping for CMFD equation. The
MOC equation requires the incoming angular flux
solution of the neighboring node. Therefore, the
outgoing angular fluxes at assembly boundaries are
stored every iteration, and then transferred to the
neighboring assembly. The CMFD equation requires
the scalar flux of the neighboring nodes. The data
communication is performed at each inner iteration.

The data communication with the neighboring nodes
is performed through the MPI_PL_WORLD. Figure 2
shows the communication order in the
MPI_PL_WORLD. For Cartesian geometry, maximum
4 communications with the 4 neighboring nodes are
required to obtain the neighboring node data. If the sum
of the row and column assembly index is even number,
the processor determines the communication order

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

clockwise from the bottom surface, and receives the
data first and sends next. Otherwise, the processor
determines the communication order clockwise from
the top surface, and sends the data first and receives
next.

The data communication occurs simultaneously
according to the communication order.

Fig. 2. Communication Order in MPI_PL_WORLD

2.3 Communication in the MPI_ASY_WORLD

The communication between planes occurs when

performing the node sweeping for the axial Pn and for
the CMFD equations. The Pn equation requires the flux
moment solutions of the neighboring planes, and the
flux moment solutions of a plane are transferred to the
neighboring planes every inner iteration. The CMFD
equation requires the scalar flux of the neighboring
planes. The data communication is performed after one
inner iteration.

Fig. 3. Communication Order in MPI_ASY_WORLD

The data communication with the neighboring planes

is performed through the MPI_ASY_WORLD. Figure 3
shows the communication order in the
MPI_ASY_WORLD. In the axial direction, maximum
2 communications with the 2 neighboring planes are
required to obtain the neighboring plane data. If the

plane index is odd number, the processor communicates
with the lower plane first and next with the upper plane,
and receives the data first and sends next. Otherwise,
the processor communicates with the upper plane first
and next with the lower plane, and receives the data
first and sends next.

The data communication occurs simultaneously
according to the communication order

3. Performance Examination

The performance of the massive parallel computation is
examined first for the C5G7 2-D and 3-D problem, and
next for SMART quarter core test problem. In the
evaluation, the massive parallel computation is also
compared with the OpenMP based radial parallel
computation. In the examination, 0.02 cm for ray
spacing, 32 azimuthal angles, and 2 polar angles are
used.

3.1 C5G7 2-D Problems

One assembly node computation per CPU is a target

goal of the massive parallel computation scheme.
Therefore, the target computing time is also the
computing time for one assembly. The computational
efficiency of the massive parallel computation is
discussed in this aspect.

Table Ⅰ: Computational Efficiency for C5G7-2D

Benchmark Problem
 Size Total CMFD MOC Comm*
Time,
sec

FA 16.53 0.11 16.16
OC 17.97 0.21 17.37 0.21
QC. 17.91 0.23 17.35 0.21
FC 18.14 0.37 17.25 0.38

** OC 0.92 0.52 0.93
QC 0.92 0.48 0.93
FC 0.91 0.30 0.94

* Communication
** Efficiency = TSA/T, TSA=Time for FA
OC: Octant Core, QC: Quarter Core
FC: Full Core

Table I shows the computation efficiency of the

massive parallel computation. The C5G7 problem
consists of total 36 assemblies with 16 fuel and 20
reflector assemblies, respectively. Most of the
computing time of more than 95 % is charged for MOC
calculation. The parallel performance of MOC
calculation shows good performance of about 0.93.
However, the CMFD calculation shows less
performance ranging from 0.52 to 0.30. The parallel
performance is associated with the computing load and
the number of communication. The CMFD calculation
has lower computing load than the MOC calculation,
but requires more frequent communication with the

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

neighboring node. Also the CMFD module requires
more number of iterations according to the problem size.
Those are the reasons for the degradation in the parallel
efficiency of CMFD module to the MOC module. The
total parallel efficiencies range from 0.92 to 0.91.

3.2 C5G7 3-D Problems

In the 3-D problem, it’s not easy to obtain the

reference computing time for the single node where the
axial Pn calculation is omitted. Therefore, the reference
computing time is obtained instead for the single
assembly which consists of 4 axial nodes by performing
the parallel computation with 4 CPUs, the
computational efficiency of the massive parallel
computation is discussed by comparing with the single
assembly calculation.

Table II shows the computation efficiency of the
massive parallel computation. In the table, the CMFD
time includes the axial Pn computing time. As for the 2-
D problem, most of the computing time of more than
90 % is charged for MOC calculation, which is less
than 2-D case due to the burden for the axial Pn
calculation. The parallel performance of MOC
calculation shows good performance ranging from 1.00
to 0.97. However, the CMFD calculation shows less
performance ranging from 0.62 to 0.45. The axial Pn
calculation shows the parallel performance ranging
from 0.65 to 0.50 which are the better performance than
the CMFD calculation.The total parallel efficiencies
range from 0.98 to 0.86.

Table Ⅱ: Computational Efficiency for C5G7-3D

Benchmark Problem
 Size Total CMFD Pn MOC Comm*
Time,
sec

FA 19.37 1.63 1.37 17.46 0.08
OC 19.72 2.61 2.12 16.70 1.42
QC. 20.50 2.63 2.09 17.50 1.55
FC 22.42 3.61 2.72 17.96 2.78

** OC 0.98 0.62 0.65 1.05
QC 0.94 0.62 0.66 1.00
FC 0.86 0.45 0.50 0.97

* Communication
** Efficiency = TSA/T, TSA=Time for FA
OC: Octant Core, QC: Quarter Core
FC: Full Core

Table III shows the computing time breakup when

using OpenMP according to the number of threads with
4 axial decomposition using MPI. For octant core
problem, the total number of CPUs when using the 6
threads is same CPUs with the massive parallelization
scheme in Table II, and shows similar computational
speed. For quarter core problem, the total number of
CPUs when using the 9 threads is same CPUs with the
massive parallelization scheme in Table II, and shows
worse computational speed. The 12 threads is the limit

number of threads in this computing environment.
Therefore, for full core problem, the 12 threads is used
and shows not good performance. By comparing Table
III with Table II, it can be concluded that the MPI based
massive parallelization shows better performance than
using OpenMP in the computing time and in the
utilization of computing environment.

Table Ⅲ: OpenMP Performance with 4 Domain

Decomposition for C5G7-3D Benchmark Problem, sec
Size Thread Total CMF

D
Pn MOC Comm*

OC 12 13.94 2.62 1.67 9.51 0.18
6 21.18 3.75 2.67 15.58 0.20

QC 12 30.23 6.08 3.90 18.74 0.49
9 35.60 6.49 4.30 23.79 0.45

FC 12 133.29 26.08 16.62 61.08 1.53
* Communication
OC: Octant Core, QC: Quarter Core
FC: Full Core

3.3 Realistic Quarter Core 3-D Test Problems

To examine the applicability of the massive

parallelization, the realistic SMART quarter 3-D core
problem is solved. The original problem which consists
of 24 axial planes with 20 fuel planes and 4 reflector
planes is modified to 14 plane problems with 10 fuel
planes. This problem requires total 238 CPUs which is
acceptable in this LINUX environment for the massive
parallel computation.

Table IV shows the computation efficiency of the
massive parallel computation. As for the C5G7 problem,
most of the computing time of more than 95 % is
charged for MOC calculation. The parallel performance
of MOC calculation shows good performance of about
0.90. However, the CMFD calculation shows poor
performance of about 0.32. The total parallel efficiency
is about 0.80.

Table Ⅳ: Computational Efficiency for Realistic 3-D

Core Problem
 Size Total CMFD Pn MOC

+SG
Comm*

Time,
sec

FA 337.8 12.1 8.8 321.0 1.0
OC 420.3 37.7 25.6 356.7 13.4

** OC 0.80 0.32 0.34 0.90
* Communication
** Efficiency = TSA/T, TSA=Time for FA
SG: Subgroup Calculation, OC: Octant Core

4. Conclusion

In this paper, the massive parallel computation is
introduced to whole core transport calculation, the
performance is examined for C5G7 2-D and 3-D

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 17-18, 2018

problems and for the realistic 3-D core problem. The
goal of the massive parallelization in this paper is
assign one 3-D node per CPU. The examination shows
that the parallel efficiencies are 0.89 and 0.77 for 2-D
and 3-D C5G7 problems, and 0.80 for the realistic 3-D
core problem. These efficiencies are very good
considering the number of CPUs attending the
computations. Therefore, it can be concluded that the
massive parallel computation works good for the whole
core transport calculation. In the parallel efficiency, the
CMFD and axial Pn calculation showed poor efficiency,
and deteriorates the total efficiency. Therefore, more
efficient parallel scheme needs to be developed in the
future.

ACKNOWLEDGMENT
This study was supported by the National Research

foundation of Korea (NRF) grant funded by the Korea
Government (MSIT). (No. 2017M2A8A1092448).

REFERENCES
[1] J. Y. Cho et al., “Axial SPN and Radial MOC Coupled
Whole Core Transport Calculation,” Journal of NUCLEAR
SCIENCE and TECHNOLOGY, 44, 9, 1156 (2017).
[2] Y. S. Jung et al., “ Practical Numerical Reactor
Employing Direct Whole Core Neutron Transport and
Subchannel Thermal/Hydraulic Solvers,” Ann. Nucl. Energy,
62, 357 (2013).
[3] MPACT TEAM, MPACT Theory Manual, Tech. rep., Oak
Ridge National Laboratory and the University of Michigan
(2015).

