Transaction of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 17-18, 2018

An Application of the Cascading Assessment Methodology for Evaluating Multi-Unit Risk

May 18, 2018 Wonjong Song, Sunghyun Park, and Moosung Jae Hanyang University & MURRG(Multi-Unit Risk Research Group)

Contents

Introduction

Methodology and Application

Results

Conclusion

1. Introduction

Introduction

- Amendment of Nuclear Safety Acts (NSA) issued in 2016 clarifies submission of the 'Accident Management Program (AMP)' including contents of Probabilistic Safety Assessment (PSA)¹
- Notification of the Nuclear Safety and Security Commission (NSSC) revised in 2016 contains below:²⁾
 - ▶ "부지 인근 주민의 발전용원자로시설 사고로 인한 초기사망 위험도 및 암사망 위험도가 각 각의 전체 위험도의 0.1% 이하이거나 또는 그에 상응하는 성능목표치를 만족할 것"
- After Fukushima nuclear power plant accident, public interests in multi-unit PSA have been increased

Introduction (cont'd)

- Multi-unit accidents can be initiated by CCIs and SUIs*
- 1. CCIs (Common Cause Initiators)
 - MULOOP (Multi-Unit Loss Of Off-Site Power)
 - MULOUHS (Multi-Unit Loss Of Ultimate Heat Sink)
 - Natural Hazards (Typhoon, Gale, Tsunami, etc.)

- 2. SUIs (Single-Unit Initiators)
 - Combination of restricted
 - Cascading case
 - Propagating case

2. Methodology and Application

Methodology and Application

- D.W. Hudson proposed the methodology for evaluating cascading multi-unit accident*
- Only representative accident scenarios selected from single-unit PSA were used for modeling two unit accident scenarios
- Two site (Peach Bottom and Surry) were considered
- Three and four single-unit accident scenarios were selected for the Peach Bottom and the Surry sites, respectively
- These single-unit accident scenarios considered to be risk-significant were from the SOARCA pilot study

Peach Bottom			Unit 3			Unit 2				
		LTSBO	STSBO-BASE	STSBO-RCIC	Sı	ırry	LTSBO	STSBO- BASE	STSBO- TISGTR	ISLOCA
Unit 2	LTSBO	BWR1	BWR2	BWR3		LTSBO	PWR1	PWR2	PWR3	PWR4
	STSBO- BASEBWR4STSBO- RCICBWR7	BWR4	BWR5	BWR6 BWR9	TT	STSBO- BASE	PWR5	PWR6	PWR7	PWR8
		<u>.</u>			Unit I	STSBO- TISGTR	PWR9	PWR10	PWR11	PWR12
		BWR7	R7 BWR8 BWR9			ISLOCA	PWR13	PWR14	PWR15	PWR16

ISLOCA=interfacing systems loss of coolant accident; LTSBO=long-term station blackout; STSBO-BASE=unmitigated short-term station blackout; STSBO-RCIC=short-term station blackout with reactor core isolation cooling system operation; STSBO-TISGTR=short-term station blackout with thermally-induced steam generator tube rupture

*: Hudson, D. W., & Modarres, M. (2017). Multiunit Accident Contributions to Quantitative Health Objectives: A Safety Goal Policy Analysis. *Nuclear Technology*, *197*(3), 227-247.

- Hypothetical site that consists of one WH600 and two WH900 reactor types were considered
- Unit 1 (WH600) is located in Plant 1, and Unit 2, 3 (WH900) are located in Plant 2
- Probability of interactions between Unit 2 and Unit 3 is larger than that between Unit 1 and Unit 2 (or 3)
- Key assumptions are below
- One unit always serves as the affecting unit for multi-unit accidents
- Considered accident scenarios are representative of the full spectrum of potential accident scenarios for each reactor type to their consequence distribution
- States of all units are full power operation
- Multi-unit accidents can be modelled by combination of STCs(Source Term Categories)
- CCDPs of the affected units are 1 because conditional probability of cascading contains an occurrence of core damage accident in the affected units

Transaction of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 17-18, 2018

Methodology and Application (cont'd)

<u>Step 0: Estimate single-unit accident scenarios risk performed by the</u> <u>conventional PSA methodology for each unit^{1, 2)}</u>

STC #	Frequency	Representative accident sequence	Conditional consequence of representative accident sequence	Risk
1	F_1	PDS ## and CET ##	<i>C</i> ₁	$R_1 = F_1 \times C_1$
2	<i>F</i> ₂	PDS ## and CET ##	<i>C</i> ₂	$R_2 = F_2 \times C_2$
:	÷	:	÷	:
m-1	F_{m-1}	PDS ## and CET ##	C_{m-1}	$R_{m-1} = F_{m-1} \times C_{m-1}$
m	F _m	PDS ## and CET ##	C_m	$R_m = F_m \times C_m$
Тс	otal single-unit	accident scenario risk	$R^{Conventional} = 2$	$\sum_{i=1}^{m} R_i$

Step 1, 2a, and 2b

- This research considered STCs rather than IEs(Initiating Events)
- WH600 and WH900 each had 17 STCs, and 17 STCs were classified into 3 groups (Condition: Containment failure type)
- Representative STCs having the highest or the next highest frequency were selected for each case (<u>for frequency adjustment factor</u>)

Step 3: Estimate unadjusted single-unit accident scenario risk

$(R_i^s)_u = F_i^s \times (C_i^s|i)$

- 'Unadjusted' means the risk contribution has not been adjusted to account for the contribution to frequency from other single-unit accident scenarios in a similar class that representative scenarios are assumed to represent
- F_i^s and $(C_i^s|i)$ are the frequency and consequence of the *i*-th representative STC
- Consequences of the representative STCs were estimated by using the MACCS code
- Considerations in using the MACCS code are below:
 - 1. ATMOS and EARLY modules were considered
 - 2. Emergency response actions were not considered
 - 3. Input data reflecting the domestic characteristics and results of the SOARCA pilot study was used for the ATMOS and EARLY modules
 - 4. Meteorological data for 2016 was used, and population data for 2010 resulted from the 'MSPAR-SITE' code(developed by the MURRG) was used
 - 5. 'Population weighted risk' was utilized for risk metrics
 - 6. Radius of 5 km was used for early health effect, and radius of 30 km was used for latent cancer health effect considering the PAZ(Precaution Action Zone) and UPZ(Urgent Protective Action Planning Zone)*

Step 4a: Estimate single-unit frequency adjustment factor

$$\alpha^{s} = \left(\frac{F_{total}^{s}}{\sum_{i} F_{i}^{s}}\right)$$

- Adjustment factor was needed to correct the representative STC frequencies to account for the contribution to the frequencies from other STCs not modeled
- It was assumed that the adjustment factor could be applied to all representative STCs
- F_{total}^{s} is the total STCs frequency initiated by all internal events
- Adjustment factor for Unit 1 was calculated as 1.39, and adjustment factor for Unit 2,3 was calculated as 1.7

Step 4b: Estimate adjusted single-unit accident scenario risk

$R_i^s = \alpha^s \times (R_i^s)_u$

 $F_{total}^{s} = \sum_{i} R_{i}^{s}$

Step 5: Estimate adjusted total single-unit accident risk

Adjusted total single-unit accident risk was compared to the conventional single-unit PSA risk estimated in <u>Step 0</u>

	Early Health Effect (0~5 km)	Latent Cancer Health Effect (0~30 km)			Early Health Effect (0~5 km)	Latent Cancer Health Effect (0~30 km)
Conventional single-unit PSA	$R^{Conventional}_{Early}$	$R_{Latent}^{Conventional}$	Relative error =	Unit 1	12.84 %	9.34 %
Adjusted total single- unit	$R^{Adjusted}_{Early}$	$R_{Latent}^{Adjusted}$	$\frac{\left(\frac{R^{Conventional}-R^{Algusted}}{R^{Conventional}}\right)}{\times 100\%}$	Unit 2, 3	-25.13 %	-29.43 %

<u>Step 6</u>

- Combine the representative STCs for multi-unit accident scenarios
- STC 2, 12, 17 were selected for Unit 1 (WH600), and STC 1, 13, 17 were selected for Unit 2, 3 (WH900)
- All combinations where each unit became the affecting unit were considered

Two-unit ac	cident so	cenarios (B	etween Un	it 1 and Un	nit 2)					
Classification	Unit					STC				
Affecting	1	2	2	2	12	12	12	17	17	17
Affected	2	1	13	17	1	13	17	1	13	17

Three-unit accident scenarios (Between Unit 1, Unit 2, and Unit 3)															
Classification	Unit		STC												
Affecting	1	2	2	2	2	2	2	2	2	2	12	12	12	12	12
Affected	2	1	1	1	13	13	13	17	17	17	1	-1-7	1	13	13
Affected	3	1	13	17	1	13	17	1	13	17	1	13	17	1	13
Classification	Unit		STC												
Affecting	1	12	12	12	12	17	17	17	17	17	17	17	17	17	
Affected	2	13	17	17	17	1	1	1	13	13	13	17	17	17	
Affected	3	17	1	13	17	1	13	17	1	13	17	1	13	17	

Step 7a: Estimate multi-unit accident scenario frequencies

$$F_{ijk}^{m} = F_{i}^{s} \times \boldsymbol{\beta}_{i} \times \left(\frac{F_{j}^{s}}{\sum_{j} F_{j}^{s}}\right) \times \left(\frac{F_{k}^{s}}{\sum_{k} F_{k}^{s}}\right)$$

- F_{ijk}^m is the multi-unit accident frequency where the index *i* means the representative STC of the affecting unit, while the index *j*, *k* mean the representative STCs of affected units
- F_i^s is the *i*-th representative STC frequency in the affecting unit
- $\left(\frac{F_j^s}{\sum_j F_j^s}\right)$ and $\left(\frac{F_k^s}{\sum_k F_k^s}\right)$ are the ratio of *j*-th and *k*-th representative STC frequencies by the total

representative STC frequency for the affected unit

β_i is conditional probability of a core damage accident occurring in the affected units which represents degree of dependency between units

Step 7a: Estimate multi-unit accident scenario frequencies (cont'd)

- It was expected that multi-unit accident scenarios comprised of the different affecting unit accident scenario would have different β_i
- S. Schroer suggested six dependencies between multiple units¹⁾
- <u>'Shared connection'</u>, <u>'Proximity'</u>, and <u>'Human' dependencies</u> were considered in this

1): Schroer, S., & Modarres, M. (2013). An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment. Reliability Engineering & System Safety, 117, 40-51. 2): KINS, Operational Performance Information System for Nuclear Power Plant (OPIS)

Step 7a: Estimate multi-unit accident scenario frequencies (cont'd)

Step 7b: Estimate multi-unit accident scenario consequences

$\left(C_{ijk}^{t}\middle|ijk\right)$

- MACCS 3.11.2 version was utilized, and 'Multiple Source Term' function was used for simulating multi-unit accidents (difference of release timing was considered)
- Input data of the single-unit representative STCs was used
- It was assumed that accidents for each unit were initiated concurrently
- Emergency response actions were not considered for consistence with single-unit accident simulations
- Release points of multi-unit accident scenarios were calculated by applying the center-ofmass location for thermal power of each unit using the 'MSPAR-SITE' code
- Radius of 5 km was used for early health effect, and radius of 30 km was used for latent cancer health effect considering the PAZ and UPZ in the MACCS code

Step 8: Estimate unadjusted multi-unit accident scenario risk

 $\left(R_{ijk}^{m}\right)_{u} = F_{ijk}^{m} \times \left(C_{ijk}^{m}|ijk\right)$

Step 9a: Estimate multi-unit frequency adjustment factor

$$\alpha^{m} = \left(\frac{\boldsymbol{\beta} \times \boldsymbol{F}_{total}^{s}}{\sum_{ijk} \boldsymbol{F}_{ijk}^{m}}\right)$$

• $\beta \times F_{total}^{s}$ means total multi-unit STC frequency from all multi-unit accident scenarios initiated by internal events

Step 9b: Estimate adjusted multi-unit accident scenario risk

 $R_{ijk}^m = \alpha^m \times \left(R_{ijk}^m\right)_u$

Step 10: Estimate adjusted total multi-unit accident scenario risk

$$R^m_{total} = \sum_{ijk} R^m_{ijk}$$

3. Results

Results

• **Two-unit accident scenarios were dominant** in frequency and risk of multi-unit accident scenarios

Results

- Results of multi-unit (two-unit + three-unit) accident scenarios were compared to those of single-unit accident scenarios
- Ratio: (Result of multi-unit) / (Result of comparing case) × 100 %

Comparison of f	requenc	у								
Case		Compa	red to WH600	Compared	to WH900	Compared to sum of total single-unit frequencies [WH600+(2×WH900)]				
Ratio				Intention	nally blanked					
Comparison of r	isk									
Case	(Compared	co WH600 Compared to WH900			Compared to sum of total single-unit risks [WH600+(2×WH900)]				
Ratio	Early Ef (0~.	Health fect 5 km)	Latent Cancer Health Effect (0~30 km)	Early Health Effect (0~5 km)	Latent Cancer Health Effect (0~30 km)	Early Health Effect (0~5 km)	Latent Cancer Health Effect (0~30 km)			
			Intentionally blanked							
If emergency response actions and CCDPs of the affected units are considered, a much smaller results will be estimated!										

4. Conclusion

Conclusion

- Methodology for evaluating multi-unit accident scenario frequency and risk due to cascading effect were studied in this research
- Highly conservative assessments were performed because the CCDPs of the affected units were assumed to be 1 and emergency response actions were not considered
- Results of two-unit accident scenarios contributed most to the results of multi-unit accident scenarios
- Frequency and risk of multi-unit accident scenarios were estimated to be much smaller than those of total single-unit accident scenarios
- For a more detailed research of multi-unit accident risk by cascading effect, it would be sufficient to consider only two-unit accident scenarios and sensitivity analysis should be performed
- In addition, research on multi-unit accident risk by CCIs and propagating effect should be performed
- Results of this research will contribute to establishing a developed multi-unit PSA methodology where it is not possible to model all multi-unit accident scenarios

Thank you for listening!

