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1. Introduction 

 
In nuclear power plants (NPPs), accurate situation 

awareness is extremely important, particularly for safety. 

Therefore, to maintain the safety at an acceptable level, 

preventive measures are necessary to deal with potential 

issues. During plant operation, faults and failures can 

occur in sensors, equipment, and processes which can 

have impact on the performance of the plant. Hence, in 

order to achieve accurate situation awareness and to 

ensure safety, on-line monitoring of the process during 

operation has been adopted. Moreover, the demand for 

robust and resilient performance has led to the often use 

of these techniques to monitor process parameters and 

equipment conditions during operation. These 

techniques have the capability of providing early 

warning of impending failure or degradation of plant 

equipment [1]. 

The applications of unilateral kernel regression (KR) 

otherwise known as auto associative kernel regression 

(AAKR) to process monitoring of industrial 

components have been largely reported in literature 

which has been successfully utilized in steady-state 

equipment condition assessments. However, AAKR has 

limitation in time-varying data that has several 

repetition of the same data point of the signals 

particularly in normal operational transient conditions 

of the plant; and  still lack temporal information in that, 

only the current query vector has effect on the model 

[2]. Moreover, the robustness and spillover of AAKR in 

reproducing the signals expected in normal condition 

when supplied with the abnormal input signals due to 

fault have being the issues, especially if the deviations 

of the signals due to fault is large enough or if the 

signals are highly correlated. These effects make it 

difficult for AAKR in some situation to identify the 

variable responsible for fault. In addition, current 

solutions to on-line monitoring of industrial processes 

and components focus mostly on detecting the 

anomalies from normal conditions during a steady-state 

operation. Monitoring of the process and equipment 

condition assessment in the start-up and shutdown 

mode operations requires a model for normal but 

transient monitoring which has been largely ignored. 

Also, some processes and equipment definitely require 

transient operation. 

Motivated by the above observations, this paper 

proposed a new totally data-driven method for on-line 

condition monitoring in normal transient operation of 

NPP based on Auto Associative Bilateral Kernel 

Regression (AABKR). By introducing the concept of 

bilateral kernel into the kernel regression, a more 

representative of the model that utilizes both the spatial 

and temporal information of the data is formulated and 

a new weighted distance algorithm that captured the 

temporal information is proposed. The proposed 

method is implemented on start-up operational transient 

of NPP. Monitoring results demonstrate the feasibility 

and the efficiency of the proposed method, and can be 

used to improve process and equipment condition 

assessment in transient operational state. 

 

2. Methods and Results 

 

In this section the overviews of AAKR and bilateral 

filter (BF) are first presented in order to established 

background for the proposed method prior to the 

description of the proposed algorithms. Note that in this 

paper, only a brief descriptions of these models are 

presented. At the end of the section, the results of the 

application of the proposed method to NPP operational 

transient are given and discussed. 

 

2.1 Overview of AAKR Model  

 

The process of estimating a parameter’s value in 

statistics and empirical modeling by calculating a 

weighted average of the historical observations is called 

Kernel Regression. KR is generally represented by the 

Nadaraya-Watson estimator. The AAKR formulation of 

KR is an auto-associative in the sense that, it’s typically 

trained to reproduce its own input under normal 

operating conditions. 

Given a matrix        of memory data set of p 

process variables with m number of memory vectors, 

for any given on-line query input vector     
    the 

mathematical framework of AAKR modeling technique 

is as follows [3]: 

The distance between a query vector and each of the 

memory vectors is computed using Euclidean distance 

(L
2
-Norm), for which the equation for the ith memory 

vector is 

𝑑𝑖( 𝑖 ,   𝑞) = ‖ 𝑖 −   𝑞‖2 =
√∑(𝒙𝑖𝑗 −  𝒙𝑞𝑗)

2

 

𝑗= 

       (1) 

Then, these distances are used to determine weights 

by evaluating the Gaussian kernel expressed by 

𝑘𝑖( 𝑖 ,   𝑞) = 𝑒𝑥𝑝 (
−𝑑𝑖

2

2ℎ2
)                                               (2) 
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where h is the kernel bandwidth. 

Finally, these weights are combined with the memory 

vectors to make predictions using the weighted average 

of Nadaraya-Watson estimator: 

�̂�𝑞𝑗 =
∑ 𝑘𝑖( 𝑖 ,   𝑞). 𝑥𝑖𝑗
 
𝑖= 

∑ 𝑘𝑖( 𝑖 ,   𝑞)
 
𝑖= 

                                               (3) 

 

2.2 Overview of Bilateral Filter Model  

 

A bilateral filter (BF), first proposed by Tomasi and 

Manduchi [4], is a non-linear, edge-preserving and 

noise-reducing smoothing filter which has been widely 

used in image processing and denoising. To remove 

noise while preserving edges, BF uses the weighted 

average of nearby pixels in a local neighborhood, where 

weights rely not only on the distance of pixels (spatial 

differences) but also on the intensity distance (range 

differences). 

Surprisingly, it appears that despite the BF ubiquitous 

popularity in image processing and denoising 

applications, its idea are not widely recognized or used 

in online industrial process monitoring. Indeed, in the 

last decade, Park et al [5] described the feasibility and 

performance of BF filter to noise filtering of neutron 

detector signals in NPP, and demonstrated that the BF 

outperformed both unilateral KR filter with fixed and 

adaptive bandwidth and the wavelet filter. Their 

approach of utilizing BF can be described as follows [5]: 

The measurement produces a set of random variables 
* 𝑖 , 𝑥𝑖  = 1, 2, , + on the interval *   𝑖   + and 

assumed that 

𝑥𝑖 = 𝑥( 𝑖)                                                                            
where   is a random noise variable with the mean equal 

to zero. Since the purpose of the BF used in [5] is to 

smooth out the small noise details and to preserve edge 

signals, no specific noise characteristic of   is assumed. 

The kernel estimate of 𝑥( ) at  =   from this data is 

defined by 

�̂�( ) =
∑ 𝑥𝑖 . 𝑘( −  𝑖)
 
𝑖= 

∑ 𝑘( −  𝑖)
 
𝑖= 

.                                                (4) 

The function k is selected as bilateral Gaussian 

function (a pair of Gaussian distribution), that is, 

𝑘( ) = 𝑘 (𝑑      𝑒)  𝑘 (𝑓𝑒    𝑒)                         (5) 
with 

𝑘 (𝑑      𝑒) = 𝑒𝑥𝑝 (−
‖ 𝑖 −   𝑞‖2

2

2  
2

)                      (6) 

𝑘 (𝑓𝑒    𝑒) = 𝑒𝑥𝑝 (−
‖𝑥𝑖 −  𝑥𝑞‖2

2

2  
2

)                      (7) 

where   
2  and   

2  parameters are the variances for 

noise filtering and feature preservation respectively, and 

 𝑞 and 𝑥𝑞  are the query inputs for time that falls within 

the interval *   𝑖   + at which the query vector is 

observed and feature value respectively. However, 

based on the authors’ best knowledge, Auto Associative 

Bilateral Kernel Regression (AABKR) has not been 

applied for industrial process monitoring and fault 

detection tasks. 

It is important to note that the BF approach described 

above cannot be directly utilized in its present form for 

on-line process monitoring implementation due to the 

following reasons: (1) the query time input (Eq. (6)) at 

which a query feature data point occurred is required for 

on-line implementation. Even though this is known for 

a particular historical data set within the specified 

period of time {   𝑞   }  at which the data is 

collected, the query time input becomes indefinite when 

applied to on-line monitoring, and it is virtually 

impossible to collect historical data that covered the 

operational life span of large industrial components; (2) 

if a fault occurs in a process, depending on the 

magnitude of the fault, it is very possible that the result 

of Eq. (7) maybe zero and leads Eq. (5) to have a zero 

value outcome irrespective of the value of Eq. (6). If 

this occurs, the model prediction tends to follow the 

fault occurrence and the fault will not be detected. 

Therefore in order to utilize the concept of bilateral 

kernel in this work, several modifications are proposed 

for on-line condition monitoring particularly in 

operational transient. 

 

2.3 Description of the Proposed AABKR Model  

 

A transient time-varying data is a sequence of 

observations which are ordered in time or space. The 

time in this case, is called the independent variable. 

Therefore, without any loss of generality, we assumed 

that the time is discrete; hence a time-varying data is 

defined as a sequence of pairs 
,(𝑥 ,   )  (𝑥2,  2)     (𝑥 ,   )-  with (    2    
  )  where each xi is a data point in d-dimensional 

feature space, and ti is the time at which xi occurs. The 

data for more than one variable signal can be considered 

as sequences of the p-dimensional time-varying data 

points, if their sampling rates are the same. 

With this definition, consider the sequences of the 

historical time-varying data set        as a memory 

data whose elements are functions of the scalar 

parameter time t, with a p-dimensional variable signals 

and m number of observations; where xi,j represents the 

ith observation of the jth variable. For any on-line query 

observation  𝑞   
    at time  𝑞 , the proposed 

AABKR modeling technique can be expressed in such a 

way that each neighboring value is weighted on its 

proximity in space and time, which its mathematical 

framework is compose of the following steps: 

Step 1 – Feature Distance Calculation 

The feature range distance between a query vector and 

each of the historical memory vectors, which measure 

the feature correlations, is computed by: 

𝑑𝑖( 𝑖 ,   𝑞) = ‖ 𝑖 −   𝑞‖ =∑|𝒙𝑖𝑗 −  𝒙𝑞𝑗|

 

𝑗= 

              (8) 

resulting to a distance vector,       : 

 = ,𝑑 𝑑2  𝑑 -
 .                                                (9) 
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Step 2 –Feature Kernel Quantification 

Here, these feature range distances are used to 

determine feature range weights by evaluating the 

Gaussian kernel for preservation of feature space, 

expressed by: 

𝑘𝑖
 
= 𝑒𝑥𝑝 (

−𝑑𝑖
2

2ℎ 
2 )                                                           (1 ) 

where hf is a kernel bandwidth for feature preservation 

which controls how much the nearby memory feature 

vector is weighted. 

 

Step 3 – Temporal Weighted Distance Calculation 

Here, the temporal distance measures that capture the 

time variations and dependencies of the data are 

calculated. This distance is due to the time at which the 

query vector is observed. In this case, we developed a 

method for the calculation of the temporal correlation of 

the query input with memory data without the use of 

query time input ( 𝑞) to the model. This eliminate the 

direct use of  𝑞 which becomes indefinite when applied 

to online implementation. This temporal distance is 

named a temporal weighted distance,  , and its 

calculation is based on the assumption that the time-

varying historical data collected for building the model 

are sampled at a constant time interval,  . If this 

assumption holds, for any on-line query data vector 

observed, it is possible to determine the most nearest 

vector and its time location within the memory data 

vectors to the observed query vector. The approach used 

to correctly identify the most nearest vector time 

location within the memory data vectors is first 

described. 

This time location index can be obtained using 

derivatives. The basic idea behind this approach is that 

instead of direct usage of the derivatives for capturing 

the temporal correlation of the data in the prediction, 

which may not be a good choice due to measured noises 

that are inevitable in real processes, the derivative is 

used herein as a comparator to determine the time 

index within the memory vectors at which the query 

data vector is most nearest to. This approach can be 

explained as follows: 

The derivative of the matrix X with respect to t is the 

  𝑝  matrix of element-by-element derivatives, 
 

  
( )      . While, the derivative of the matrix xq 

with respect to t is the 1  𝑝  vector of element-by-

element derivatives, 
 

  
( 𝑞)   

   . 

Note that these derivatives can be approximated from 

the data itself using finite difference derivative 

approximation [2]. The backward finite difference 

derivative approximation is chosen in this work in order 

to implement real-time online monitoring. 

The distance between the derivative of the query 

input vector and each of the ith vector derivative of the 

memory data is calculated as. 

 𝑖 = ‖
 𝑥𝑖𝑗

  
−
 𝑥𝑞𝑗

  
‖
 
=∑|

 𝑥𝑖𝑗

  
−
 𝑥𝑞𝑗

  
|

 

𝑗= 

                (11) 

This resulted into the derivative distance vector 

 = ,   2    -
                                               (12) 

Then, the index,  =   of  𝑖with the minimum value 

in Eq. (13), which indicates the location of a vector in 

memory data where the query input vector is closest to, 

can be obtained. Hence, the index position at which 

minimum Manhattan distance of derivative of the query 

input vector from the vectors of the derivative of 

memory data is determined by: 

 =        
𝑖 , , -

( 𝑖)                                                             (13) 

Having determined the time position index, the 

temporal weighted distance,        that capture the 

temporal correlation is then calculated by: 

 𝑖 = {

  ,                      

   ( −  ).  ,

   ( −  ).  ,

 =                   
         
        1 

    ,1, -           (14) 

It can be seen that, once the values of    and   are 

known, the other values can be calculated progressively. 

The second and third equations in Eq. (15) follow 

arithmetic progression herein the first term and the 

common difference of the two progressions are    and   

respectively. The value of the first term of the two 

progressions,   =   should be used. This is due to the 

fact that the distance of the most nearest vector to the 

query input is close to zero. 

Step 4 – Temporal Kernel Quantification 

The kernel weights can then be calculated using the 

Gaussian Kernel function which is the kernel for the 

time-domain preservation and noise rejection as 

𝑘𝑖
 = 𝑒𝑥𝑝 (

−  
2

2ℎ 
2 )                                                            (15) 

Step 5 – Bilateral Kernel Quantification 

By the combination of Eq. (10) and Eq. (15), the 

bilateral kernel weight can be obtained as 

𝑘𝑖 = 𝑘𝑖
 
 𝑘𝑖

                                                                       (16) 
Step 6 – Output Prediction 

Finally, these bilateral kernel weights are combined 

with the memory data vectors to make predictions as: 

�̂�𝑞𝑗 =
∑ 𝑘𝑖 . 𝑥𝑖𝑗
 
𝑖= 

∑ 𝑘𝑖
 
𝑖= 

                                                            (17) 

 

2.4 Application to NPP Operational Transient 

 

To verify the applicability of the proposed model, 

Compact Nuclear simulator (CNS) real-time data 

collected during heating up from cool-down mode 

(start-up operation) is used as normal start-up transient 

for training. Six sensor variables are selected for 

monitoring during this operation which are S1 (Cold leg 

temperature), S2 (Core exit temperature), S3 (Hot leg 

temperature), S4 (Safety injection flow) S5 (Residual 

heat removal flow), and S6 (Sub-cooling margin 

temperature). The data consist of 1000 observations 

collected at constant time interval of 1 sec. 
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Since this data is fault free data, an abnormal 

condition is simulated on it and used as testing data set, 

by adding a uniformly distributed signal in the range 

[0.002, 3] on the S6 from t=51 to t=1000. 

The residual plot of the training set from AAKR and 

AABKR predictions for S3 is shown in Fig. 1. It can be 

seen that AABKR gives much lower residuals close to 0 

and reflected the actual conditions than AAKR. 

The residual plots of the testing set from AAKR and 

AABKR predictions for S2, S3, and S6 are shown in 

Fig. 2. In Fig. 2(a), faults are also detected by AAKR in 

S2 and S3 sensors despite the fact that they are fault-

free; whereas, in Fig. 2(b), faults are appropriately 

detected by AABKR. This effect in Fig. 2(a) is due to 

spillover (i.e. detection of abnormal conditions on 

signals different from those which are actually impacted 

by the fault). The consequence of this effect is that, the 

actual root cause of the fault cannot be determined. That 

is, the sensor variable responsible for the fault would be 

wrongly identified, and this will mislead the 

operator/maintenance engineer’s intervention. The 

detail of this effect can be visualized in Fig. 3 which 

shows the plot of the residual predictions at time 

t=71sec. It is discovered, as shown in Fig. 3, that 

AAKR identified sensor S2 as the variable most 

impacted by the fault which is a wrong identification, 

whereas AABKR correctly identified the sensor S6 as 

the variable impacted by the fault which is actually the 

signal corrupted with the simulated fault. 

 
Fig. 1. Residual plot of the training set from AAKR and 

AABKR predictions for hot leg temperature (S3). 

 
(a) AAKR 

 
(b) AABKR 

Fig. 2. Residual of the signals obtained from AAKR and 

AABKR predictions when S6 is in fault condition. 

 
(a) AAKR 

 
(b) AABKR 

Fig. 3. Absolute residual plot for identification of root-cause 

when S6 is in fault condition 

3. Conclusions 

 

In nuclear power plant (NPP), accurate situation 

awareness to ensure safety is necessary not only in 

steady state but also in normal transient operation, 

which can be achieved through on-line condition 

monitoring. However, current solutions to on-line 

monitoring of industrial processes and components 

focus mostly on detecting the anomalies from normal 

conditions during a steady-state operation. Monitoring 

of the process and equipment condition assessment in 

the start-up and shutdown mode operations requires a 

model for normal but transient monitoring. In this work, 

a new data-driven method for on-line condition 

monitoring in normal transient operation of NPP based 

on Auto Associative Bilateral Kernel Regression 

(AABKR) is described and proposed. With the start-up 

mode of operation dataset, the proposed method works 

correctly and effectively. 

Conclusively, the analysis of the propose method and 

its application to start-up transient data described in this 

work have shown how on-line condition monitoring in 

transient operation of NPP can be achieved. If this 

approach is adopted, the cause of abnormality can be 

identified and, thus, proper maintenance intervention 

can be planned. 
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