Jin Ho Park，Hyun Sun Park＊，Junghyeon Oh，Mooneon Lee，Moo Hwan Kim

 Division of Advanced Nuclear Engineering，POSTECH
Introduction

Experiments

PICASSO experimental facility 8 Test case

Exp．cases Particle morphology Particle size［mm］Porosity［ -J
PCS－SSB 1
Sphere
2， 5 （mass 1
0.387

Proposed models through our previous studies

Single－phase flow

$$
\begin{aligned}
& \frac{-d p / d z-\rho_{i} g}{\rho_{i} g}=\psi_{i}=C_{1} \frac{\mathrm{Re}_{p}}{G a_{i}}+C_{2} \frac{\mathrm{Re}_{p}^{2}}{G a_{i}} \\
& \mathrm{Re}_{p}=\frac{\rho_{i} V_{i} d_{p}}{\mu_{i}(1-\varepsilon)}, \quad G a_{i}=\left(\frac{\rho_{i}}{\mu_{i}}\right)^{2} g\left(\frac{d_{p} \varepsilon}{(1-\varepsilon)}\right)^{3}, \\
& \tau=\frac{L_{i}}{L}=\frac{1}{2}\left[1+\frac{1}{2} \sqrt{1-\varepsilon}+\frac{\sqrt{1-\varepsilon}}{1-\sqrt{1-\varepsilon}} \sqrt{\left(\frac{1}{\sqrt{1-\varepsilon}}-1\right)^{2}+\frac{1}{4}}\right]
\end{aligned}
$$

$\left(-\frac{d p}{d z}\right)^{*}=\frac{-d p / d z}{\left(\rho_{1}-\rho_{g}\right) g}=\frac{\rho_{g} g}{\left(\rho_{1}-\rho_{g}\right) g}+\frac{F_{p l}^{*}}{s}-\frac{F_{i}^{*}}{s}=\frac{\rho_{g} g}{\left(\rho_{l}-\rho_{g}\right) g}+\frac{F_{p g}^{*}}{\alpha}+\frac{F_{i}^{*}}{\alpha}$
$F^{*}=\frac{F}{\varepsilon\left(\rho_{1}-\rho_{g}\right) g}$,
$F_{p l}=\varepsilon s\left(\frac{\mu_{1}}{K K_{r l}} V_{s t}+\frac{\rho_{l}}{\eta \eta_{t}} V_{s}\left|V_{s l}\right|\right), \quad F_{p g}=\varepsilon \alpha\left(\frac{\mu_{g}}{K K_{t g}} V_{s g}+\frac{\rho_{g}}{\eta \eta_{r g}} V_{s g}\left|V_{s q}\right|\right)$

Experimental results and conclusions

［Air Flow］

－Proposed model predicts pressure gradients of air flow in a stratified bed within 5% with d_{a} ．
［Water／Air Two－Phase Flow］
－Proposed model adopting d_{a} does not predict pressure gradients of water／air two－phase flow in contrast to air flow results．
－Proposed model predicts pressure gradients of water／air two－phase flow by means of averaging according to the bed height after calculating the upper［2 mm sphere，$\varepsilon: 0.391$ ］and lower［ 5 mm sphere ，$\varepsilon: 0.383$ ］parts of the bed．

$$
\begin{aligned}
& \text { Two-phase flow }
\end{aligned}
$$

