

Comparison between CUPID and CTF for Subchannel Scale Thermal-Hydraulic Analysis of Single Fuel Assembly Problem

Jae-Ho Lee^a, Seul-Been Kim^a, Goon-Cherl Park^a, Hyoung-Kyu Cho^a* ^a Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 *Corresponding author: chohk@snu.ac.kr

Scalar mesh cell

Nomentum mesh cell(x direction)

Momentum mesh cell(y direction)

🖕 37 🕂 38 🕂 39 📩 40 🕂

-23-45-23-46-23-437-23-

<u>____</u>

€2**−Ⅲ−**63**−**∞−

50 - 278)-111

- 552 144

72 19 73 19 74

10 87 10 88 100 89 170 90 177

Grid information of CUPID

222 54 232 55 238 56 239 57

71 📅 72

guide tube 73

-00-64

Subchannel scale thermal hydraulic codes

- Improved version of COBRA-TF by Pennsylvania State Univ.
- Grid system : staggered grid
- Vector variables and scalar variables are stored in different location
- CUPID
 - In-house code developed by KAERI.
 - Grid system : collocated grid
 - Vector variables and scalar variables are stored in the cell center.

Objective of this study

- Code-to-code comparison between CUPID and CTF
 - PSBT thermal mixing test
 - APR1400 single assembly problem

APR1400 Single Assembly Modelling

Introduction

Geometrv

236 fuel rods, 5 guide tubes, with 9 spacer grids

Power input from n-TRACER

Non-uniform power distribution

Guide tube modelling

CUPID

Small flow area at the center of the guide tubes CTF

No flow through the guide tube

Wall model around the center of the guide tubes

Wall friction factor correlation

McAdam's correlation

 $f_w = 0.204 Re^{-0.2}$

Mixing vane model

Grid-directed cross flow model

- $\overrightarrow{M_l^{GDCF}} = f_{lat,SG}^2 \left(u_l^2 \right) (\rho_l) A_{gap} S$
- *f_{lat,SG}* : lateral convection
- u_l : axial liquid velocity ρ_I : liquid density
- A_{gap} : cross-sectional area of the gap
- S : factor to account for the direction of the force(-1, 0 or 1)

APR1400 Single Assembly Problem

Quantitative comparison between CUPID and CTF

Temperature comparison at the outlet

156.4 156.2

Conclusion & Future Work

Code-to-code verification using CTF

- APR1400 single assembly problem and PSBT thermal mixing test
- Spacer grid effects are well predicted by CUPID.

Code-to-code verification with two-phase problems

Improvement of computing time using MPI processing

86 87 88 88 89 8 74-00-75-00-76-00-77-00-78 Grid information of CTF