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1. Introduction 

 
The deterministic truncation of Monte Carlo (DTMC) 

solution is a deterministic solution truncated from the 

original MC calculation assisted by coarse mesh finite 

difference (CMFD) method [1-2]. This idea was 

proposed as a variance reduction technique applied in 

the MC simulation. In the conventional CMFD method, 

the results are only used to update the fission source 

distribution (FSD). However, in the DTMC method, the 

deterministic results are used not only to update the 

FSD, but also to provide the detailed reactor 

information by itself with a pin-size CMFD node. Since 

the DTMC solution is estimated in a deterministic way 

and minimizes the uncertainties coming from the MC 

random process, it may be able to provide quite reliable 

solutions from early active cycles. 

The CMFD and DTMC solutions can be improved 

with the optimization of the boundary condition. Since 

the correction factors at boundary regions are defined 

by the simple ratio of the neutron current and flux, its 

accuracy and reliability highly depend on the CMFD 

parameters. However, the CMFD parameters are more 

uncertain near the boundary regions due to low neutron 

density. This can make the DTMC solutions less 

reliable. Therefore, this paper proposes a way of 

particle splitting method with the weight window 

scheme to improve and optimize the albedo boundary 

condition in the DTMC method. This is expected to 

enhance reliability of CMFD parameters near the 

boundary and improve the DTMC solutions. 

 

2. Methods and Results 

 

In this section the concept of the DTMC is introduced 

and the boundary condition in the DTMC method is 

presented to understand the importance of the albedo 

boundary condition. The theory of the particle splitting 

with the weight window method is presented. 

 

2.1 DTMC method 

The DTMC is the deterministic solution truncated in 

a systematic way from the MC solution assisted by the 

CMFD method. The CMFD parameters such as the 

neutron current, flux, and cross-section are calculated 

from the MC simulation, the correction factors are 

generated with the parameters, and the matrix equation 

is formulated. By solving the matrix equation of the 

reactor eigenvalue problem, the reactor parameters such 

as the multiplication factor and the detailed power 

distribution are obtained. The results are used not only 

to update the FSD of the subsequent MC calculation by 

correcting the particles’ weight, but also used for 

statistical samples to predict the solution by themselves. 

(Fig. 1) [3] 

 

 

Fig. 1. Flow diagram of CMFD and DTMC 

 

The DTMC method basically adopts the fine mesh 

grid to calculate the detailed pin-wise power profile as 

well as the multiplication factor. The DTMC method 

highly depends on the CMFD parameters estimated 

from the MC simulation, but it can be rather insensitive 

to the stochastic random process of the MC simulation 

because it is calculated by the deterministic way. 

Therefore, it minimizes the uncertainties of the solution 

and reduce the computational burden. 

 

2.2 Boundary region and condition 

To get the reliable CMFD parameters, many histories 

of the neutrons should be stored in the CMFD node. 

Therefore, the domain for the CMFD calculation is 

normally confined to an active core region where the 

neutrons are born and thus the neutron density is high. 

The non-fissionable region like a reflector is excluded. 

It can decrease the uncertainty of the node-wise 

parameter and also cut down the numerical cost by 

reducing the number of calculation nodes. 
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In the CMFD method, the correction factor within the 

boundary is calculated with the net current and the 

neighboring fluxes. 
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where 1/2sJ   is the net current, i  is the neutron flux 

at node i , 1/2sD   is the effective diffusion coefficient 

defined by 
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iD  is the diffusion coefficient at node i  , i  is the 

node size, and s  is the surface index. On the other hand, 

the correction factor at the boundary surface is 

calculated by the ratio of net current and flux. 

 1/2 1/2ˆ /s s iD J     (2) 

The two terms in the numerator of Eq. (1) are similar 

each other and cancelled out. In short, the correction 

factor of Eq. (1) gets less sensitive to the CMFD 

parameters. Comparing to the correction factor within 

the boundary, the correction factor at the boundary 

surface is more related to the CMFD parameters i.e. 

current and flux. Its accuracy highly depends on the 

parameters. Besides, the CMFD parameters are more 

unreliable near the boundary region due to low neutron 

density. Therefore, the correction can be inaccurate near 

the boundary and it will influence on final solutions. 

 

 

Fig. 2. CMFD Domain and important region 

To increase the number of histories and reliability of 

the CMFD parameters at the boundary region, the 

neutron are split into many neutrons with the low weight 

by the weight window method. In the important region, 

the more number of particles can be simulated while 

preserving the net weight of the particles. 

In Fig. 2, the boundary layer and the region of 

importance are illustrated. The CMFD domain is 

confined to the active core, and the higher importance is 

assigned to the cells surrounding the boundary layer. In 

this way, it increase the histories exclusively at the 

boundary region. 

 

2.3 Particle splitting with weight window method 

For the parameter to be reliable, many histories 

should be recorded in the given space. However, it is 

impractical to use many histories per cycle in the MC 

simulation. It is computationally expensive and 

inefficient. Therefore, it is pursued to simulate the more 

number of particles at the specific regions of interest.  

In the particle splitting with weight window method, 

the single particle can be divided into many particles at 

the important region without the numerical bias [4]. The 

weight of the particle should be decreased as the more 

neutrons are split. In short, the total net weight of the 

particles should be preserved. 

Suppose that the neutron is crossing the surface from 

the low importance region to the high importance region. 

Then the neutron is divided into many neutrons 

according to the ratio of importance. The number of 

split neutrons is 

 
1 /i in I I   (3) 

and the weight of each neutron is 

 1 /i iw w n    (4) 

where the ratio of importance is integer. 

 

 

Fig. 3. Particle crossing to different importance region 

On the other hand, if the neutron passes from the high 

importance region to the low importance region, it is 

tracked with higher weight or killed based on the 

probability such that 
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In this analysis, the cell importance in the boundary 

area is 3 while the importance in the other area is 1. The 

higher importance is assigned to the last fuel pin and the 

neighboring reflector pin in the radial direction, and 

from 14.27 cm of upper core to 7.14 cm of reflector in 

the axial direction. 

 

 

2.4 Problem description 
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Benchmark problem was solved to verify the 

numerical performance of the albedo boundary 

correction in the DTMC method. A multi-group in-

house MC code has been used for the MC and DTMC 

calculations. The 3D rodded A-type C5G7 benchmark 

was solved with the dominance ratio of 0.978. The 

quarter core is considered with UO2 and MOX fuel 

assemblies arranged in a checkerboard pattern 

surrounded by the reflector. The control rods are 

inserted to the one-third of the way into the center UO2 

assembly. (Figs. 4 and 5) [5] 

 

 

Fig. 4. Radial configuration of C5G7 core 

 

Fig. 5. Axial configuration of C5G7 core 

The million histories per cycle and 100 active cycles 

were adopted for the MC simulation. Sixty independent 

simulations were implemented to calculate the real 

standard deviation. The CMFD node was taken to be 

single pin size (1.26 1.26 cm2) in the radial direction 

and 14.28 cm in the axial direction. 

 

2.5 Numerical results 

Table I summarizes the multiplication factors and 

their stochastic uncertainties such as the apparent 

standard deviation (σa) and real standard deviation (σr), 

and compares the results between the methods including 

the standard MC (MC), MC results assisted by CMFD 

method (CMFD), and DTMC method (DTMC) with the 

different importance. The real standard deviation is 

calculated as 
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where 
bN  is the number of batches, i

effk  is the 

multiplication factor of batch i , and k  is the average 

of batch-wise keff. 

 

Table I. Multiplication factors and their stochastic 

uncertainties at certain cycles 
Importance 1 3 

Cycle Variable MC CMFD DTMC CMFD DTMC 

1 

keff 1.12867 1.12845 1.12821 1.12734 1.12801 

σa (pcm) 64.2 68.5 29.3 69.6 30.5 

σr (pcm) 85.7 83.3 43.1 83.7 43.8 

5 

keff 1.12783 1.12834 1.12826 1.12817 1.12802 

σa (pcm) 39.2 39.9 22.1 43.3 21.9 

σr (pcm) 53.0 53.6 29.5 45.1 23.8 

10 

keff 1.12787 1.12826 1.12842 1.12811 1.12784 

σa (pcm) 30.2 31.3 17.1 33.0 17.0 

σr (pcm) 40.1 37.8 23.0 33.0 16.2 

20 

keff 1.12810 1.12807 1.12824 1.12792 1.12788 

σa (pcm) 21.9 23.3 12.4 24.8 12.6 

σr (pcm) 25.7 27.7 16.9 26.2 13.5 

100 

keff 1.12819 1.12811 1.12818 1.12790 1.12796 

σa (pcm) 10.2 11.0 5.9 11.3 5.7 

σr (pcm) 12.2 12.7 7.0 11.8 6.9 

σr/ σa 1.20 1.15 1.19 1.04 1.21 

 

Fig. 6. Real standard deviation of keff 

The results with the particle splitting method show 

smaller statistical uncertainties compared to the standard 

MC and conventional CMFD and DTMC methods. Fig. 

6 shows the real standard deviation of the multiplication 

factor along with the cycle. The r of the DTMC with 

the particle splitting method is slightly lower than that 

of other methods. 

Table II summarizes the average real standard 

deviation ( r ) and average errors (  ) of 3D pin-wise 

power profile at the certain cycles, Table III compares 

the errors of 2D assembly wise power profile, and Fig. 7 

shows the average relative errors (%) of the power 

distribution of the 3rd layer. One can note that the 

particle splitting method also reduces the standard 
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deviation (SD) and errors in terms of the pin power 

distribution particularly in the boundary region. It is 

clearly observed that peak error in the 3D power profile 

is noticeably reduced. 

Table II. SD and errors of 3D pin power profile 

Importance 1 3 

Cycle Variable MC CMFD DTMC CMFD DTMC 

1 

r (pcm) 0.038 0.038 0.034 0.034 0.030 

εmax (%) 10.50 10.30 9.23 7.53 6.75 

εavg (%) 0.57 0.58 0.51 0.53 0.47 

5 

r (pcm) 0.022 0.022 0.021 0.020 0.019 

εmax (%) 5.56 5.89 5.39 3.74 3.55 

εavg (%) 0.37 0.37 0.35 0.34 0.33 

10 

r (pcm) 0.016 0.016 0.016 0.015 0.014 

εmax (%) 4.03 4.28 4.18 2.90 2.88 

εavg (%) 0.27 0.27 0.27 0.25 0.25 

20 

r (pcm) 0.012 0.012 0.012 0.011 0.010 

εmax (%) 3.02 3.19 3.29 2.07 2.04 

εavg (%) 0.20 0.20 0.19 0.18 0.18 

100 

a (pcm) 0.005 0.005 0.004 0.005 0.004 

r (pcm) 0.005 0.005 0.005 0.005 0.005 

εmax (%) 1.422 1.445 1.433 1.414 1.382 

εavg (%) 0.093 0.092 0.091 0.086 0.085 

 

Table III. SD and errors of 2D assembly power profile 

Importance 1 3 

Cycle Variable MC CMFD DTMC CMFD DTMC 

1 
εavg (%) 0.233 0.308 0.305 0.302 0.330 

εmax (%) 0.336 0.398 0.406 0.425 0.428 

5 
εavg (%) 0.188 0.219 0.199 0.187 0.186 

εmax (%) 0.239 0.322 0.304 0.248 0.236 

10 
εavg (%) 0.160 0.150 0.137 0.146 0.141 

εmax (%) 0.211 0.218 0.194 0.215 0.203 

100 
εavg (%) 0.077 0.065 0.061 0.072 0.068 

εmax (%) 0.101 0.081 0.075 0.102 0.095 

 

Computing time for each method was compared in 

Table IV. The computing time increases with the 

particle splitting method because more number of 

particles should be simulated in the higher-importance 

regions. If the active core includes the high importance 

region, time increase can be quite noticeable because 

fission neutrons should be also split and then the 

number of neutrons in a higher importance region can 

increase substantially. 

The current model includes higher importance 

regions in the active core, which is 14.28 cm of the 

upper core. It considerably increases the computing time. 

To decrease the computing time, the axial size should 

be minimized. However, if the node is too small, the 

node-wise parameters can be less reliable. Therefore, 

the optimal node size should be found to minimize the 

additional computing time while improving the accuracy 

of the solutions. 

 

 

Fig. 7. Relative errors of power distribution at 3rd layer 

Table IV. Computing time of the simulation 
Parameter Time (min) 

MC 45 

CMFD / DTMC (1) 46 

CMFD / DTMC (3) 62 

 

3. Conclusions 

 

The CMFD and DTMC solution was improved with 

the optimization of the albedo boundary condition. The 

statistical uncertainties were decreased and the errors of 

the pin-wise power distribution were decreased 

particularly near the boundary region. However, the 

computing time also increased noticeably because the 

number of particles to be simulated increased 

substantially in the fuel region. Therefore, the area and 

position of the important region should be optimized to 

decrease the computing time while improving the 

accuracy of the boundary conditions. 
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