A Study on Optimization of Albedo Boundary Conditions for the Deterministic Truncation of Monte Carlo Solutions

May 17, 2018 Inhyung Kim and Yonghee Kim Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

Presented at KNS Autumn meeting 2018 Jeju, Korea, May 17-18, 2018

Outline

I. Introduction

II. Methods

- Deterministic truncation of MC solution
- Weight adjustment method
- Vacuum boundary condition with irregular nodes

III. Numerical Results

- C5G7 benchmark problem
- Multiplication factor
- Pin-wise power distribution
- Computing time
- **IV. Concluding Remarks**

Monte Carlo (MC) calculation in a reactor criticality analysis

 A stochastic method to solve a statistical problem finding out the average behavior of the unknown parameters

Pros	Cons
 High accuracy Direct simulation of particles' whole behavior No discretization of variables (energy, angle, space) No constraints on geometry construction Simple parallel calculation 	 Computationally expensive Large memory to describe explicit geometry and to utilize cross section data Long time to track all particles and to get quantities of interest Ever after source convergence, it is important to simulate many particles in active cycles to reduce stochastic uncertainty

- Several studies have been conducted to accelerate the calculation speed and to reduce stochastic uncertainties more efficiently
 - Diffusion based coarse mesh finite difference (CMFD) method
 - Modified power method
 - Particle ramp-up method

•••

Coarse mesh finite difference (CMFD) method

- Acceleration scheme commonly used in a MC eigenvalue problem
- **Preservation of net current and reaction rate** by high fidelity solution (i.e. MC)
- Fast convergence of the fission source distribution (FSD)
 - Shorten the number of inactive cycles and the corresponding computing time
- Weak inter-cycle correlation

KNS 2018, Jeju, Korea, May 17-18, 2018

Difference between MC and deterministic methods

- When solving the neutron transport eigenvalue problem
 - Deterministic calculation : The calculation is finished as soon as FSD converges
 - MC calculation : The main calculation is activated in active cycle when FSD converges
 - MC calculation takes much longer computing time in active cycle than inactive cycle

- Calculation process

• If the FSD truly converges in the inactive MC cycle,

the reactor parameters should be already determined at the end of the inactive cycle

CMFD solution in MC simulation

- The CMFD method enables a fast convergence of the FSD
- Solution can be truncated from the original MC solution in a systematic / deterministic way
- Combination of the flexible and versatile MC method and the efficient deterministic analysis
 - No limitation in geometry modeling
 - Continuous energy
 - Numerically cheap computation

Concept of deterministic truncation of MC solution (DTMC) method

- The next FSD in MC simulation is corrected by the CMFD solution
- The deterministic result is a subset of the solution to the original MC approach

Deterministic truncation of MC solution (DTMC) method

- Solving a standard eigenvalue problem

- **Eigenvalue** : k_{eff}
- **Eigenvector** : power distribution
- Generalized equivalence theory confirms that the CMFD solution is equivalent to MC ones

- Fine mesh CMFD grid to obtain a detailed pin power profile

- Radial node size : pin (1-2 cm)
- Axial node size : 5-10 cm

Characteristics

- Boundary for CMFD domain is confined to the active core where the particle flux is high to get reliable CMFD parameters in pin-sized grid system
- Inter-cycle correlation can be higher in the DTMC method; thus, a minimum of 2 cycles is accumulated to generate the CMFD parameters
- The CMFD solution only retains the uncertainties originating from the CMFD parameters, and is free from the stochastic random process

KNS 2018, Jeju, Korea, May 17-18, 2018

Problem description

- Solved by in-house MC code
- C5G7 rodded A type benchmark problem
- 10-30 inactive cycles, 100 active cycles, 1.0M histories, 60 batches
- Pin-size CMFD mesh
- Reference solution (100 active cycles & 14.0M histories)

9

Multiplication factor

Active cycle	Parameter	MC	CMFD	DTMC	p-CMFD	pDTMC
	$k_{ m eff}$	1.12867	1.12845	1.12821	1.12830	1.12816
1	σ_a (pcm)	-	-	-	-	-
	σ_r (pcm)	85.7	83.3	43.1	70.5	45.1
	$k_{ m eff}$	1.12783	1.12834	1.12826	1.12766	1.12776
5	σ_a (pcm)	39.2	39.9	22.1	40.6	17.2
	σ_r (pcm)	53.0	53.6	29.5	44.3	28.7
	$k_{ m eff}$	1.12787	1.12826	1.12842	1.12811	1.12792
10	σ_a (pcm)	30.2	31.3	17.1	30.3	13.7
	σ_r (pcm)	40.1	37.8	23.0	33.4	21.6
	$k_{ m eff}$	1.12810	1.12807	1.12824	1.12803	1.12807
20	σ_a (pcm)	21.9	23.3	12.4	22.4	10.2
	σ_r (pcm)	25.7	27.7	16.9	23.7	14.7
100	$k_{ m eff}$	1.12819	1.12811	1.12818	1.12817	1.12812
	σ_a (pcm)	10.2	11.0	5.9	10.4	4.7
	σ _r (pcm)	12.2	12.7	7.0	11.4	7.4

MC : standard MC results CMFD & p-CMFD : MC results with CMFD & p-CMFD DTMC & p-CMFD : Deterministic results with CMFD & p-CMFD k_{ref} (reference) = 1.12808 ± 1.7 pcm σ_a : apparent standard deviation σ_r : real standard deviation

KAIST

KNS 2018, Jeju, Korea, May 17-18, 2018

Cumulative real standard deviation of k_{eff}

KNS 2018, Jeju, Korea, May 17-18, 2018

Pin-wise power profile

- Axially integrated 2D distribution

KNS 2018, Jeju, Korea, May 17-18, 2018

Errors of 3D pin-wise power distribution

Cycle	Value	MC	CMFD	DTMC	p-CMFD	pDTMC
	σ_{a}	-	-	-	-	-
	$\sigma_{\rm r}$	0.038	0.038	0.034	0.038	0.034
1	RMS (%)	4.20	4.22	3.77	4.23	3.74
	$\epsilon_{\rm avg}$ (%)	3.44	3.46	3.09	3.47	3.07
	σ_{a}	0.021	0.021	0.014	0.021	0.014
5	$\sigma_{\rm r}$	0.022	0.022	0.021	0.022	0.021
3	RMS (%)	2.46	2.47	2.37	2.47	2.37
	ϵ_{avg} (%)	2.01	2.03	1.95	2.03	1.94
	σ_{a}	0.016	0.016	0.011	0.016	0.011
10	σ_{r}	0.016	0.016	0.016	0.016	0.016
10	RMS (%)	1.828	1.828	1.781	1.831	1.785
	$\epsilon_{\rm avg}$ (%)	1.497	1.501	1.463	1.504	1.466
	σ_{a}	0.0114	0.0115	0.0084	0.0115	0.0081
20	$\sigma_{\rm r}$	0.0119	0.0119	0.0117	0.0119	0.0117
20	RMS (%)	1.327	1.327	1.303	1.329	1.308
	$\epsilon_{\rm avg}$ (%)	1.085	1.089	1.069	1.094	1.078
	σ_{a}	0.0053	0.0053	0.0040	0.0053	0.0039
100	σ_{r}	0.0055	0.0055	0.0054	0.0055	0.0054
100	RMS (%)	0.615	0.616	0.609	0.615	0.609
	ϵ_{avg} (%)	0.503	0.505	0.500	0.505	0.501

 σ_a : apparent standard deviation; σ_r : real standard deviation; RMS : root mean square error; ϵ : relative error

KNS 2018, Jeju, Korea, May 17-18, 2018

RMS error distribution of pin power

KNS 2018, Jeju, Korea, May 17-18, 2018

Summary

Findings

- The DTMC results showed good agreement with the reference solution
- The DTMC solution has lower stochastic uncertainties than the MC solutions
- The DTMC method can estimate the accurate and reliable solution at the early active cycle
- The DTMC solution of **power distribution** is **not improved as much as** k_{eff}
- The maximum errors appear in the boundary region for each method

Next work

Optimization of the boundary condition for solution improvement

Boundary condition in DTMC method

- The CMFD domain is confined to the active core region
- The CMFD parameters near the boundary surface are more unreliable
 - Less particles
 - Simpler correction
 - More sensitive to parameters

Correction factor in the inner region

$$\hat{D} = rac{J^{i+1/2} + \tilde{D}^{i+1/2}(\phi^{i+1} - \phi^{i})}{\phi^{i+1} + \phi^{i}}$$

Correction factor at the boundary surface

Albedo boundary condition : $\hat{D} = J^{i+1/2} / \phi^i$

Optimization of the boundary condition

1. Weight adjustment method at the boundary region

2. Vacuum boundary condition with irregular nodes

Methods (1)

Weight adjustment method at the boundary region

- Particle splitting with cell importance

$$-I_{i+1} > I_i: \qquad w_{i+1} = w_i / n$$

$$-I_{i+1} < I_i: \qquad \text{kill with probability } 1 - p = 1 - I_{i+1} / I_i$$

Track with $w_{i+1} = w_i \times I_i / I_{i+1}$ with probability $p = I_{i+1} / I_i$

Methods (1)

Weight adjustment method at the boundary region

- Higher importance at the boundary regions
 - ✤ Radial configuration

Multiplication factor

Cuala	Cuala Daramatar		IMP = 1		IMP = 2		IMP = 3	
Cycle	Parameter	MC	CMFD	DTMC	CMFD	DTMC	CMFD	DTMC
	$\mathbf{k}_{\mathrm{eff}}$	1.12867	1.12845	1.12821	1.12799	1.12790	1.12734	1.12801
1	σ_a (pcm)	64.2	68.5	29.3	78.0	25.7	69.6	30.5
	σ_r (pcm)	85.7	83.3	43.1	80.8	47.1	83.7	43.8
	$\mathbf{k}_{\mathrm{eff}}$	1.12783	1.12834	1.12826	1.12793	1.12828	1.12817	1.12802
5	σ_a (pcm)	39.2	39.9	22.1	45.8	22.6	43.3	21.9
	σ_r (pcm)	53.0	53.6	29.5	48.9	28.6	45.1	23.8
	$\mathbf{k}_{\mathrm{eff}}$	1.12787	1.12826	1.12842	1.12771	1.12813	1.12811	1.12784
10	σ_a (pcm)	30.2	31.3	17.1	35.0	17.0	33.0	17.0
	σ_r (pcm)	40.1	37.8	23.0	36.1	21.4	33.0	16.2
	k _{eff}	1.12810	1.12807	1.12824	1.12798	1.12799	1.12792	1.12788
20	σ_a (pcm)	21.9	23.3	12.4	25.0	12.7	24.8	12.6
	σ_r (pcm)	25.7	27.7	16.9	25.9	15.7	26.2	13.5
	$\mathbf{k}_{\mathrm{eff}}$	1.12819	1.12811	1.12818	1.12793	1.12802	1.12790	1.12796
100	σ_a (pcm)	10.2	11.0	5.9	11.4	5.9	11.3	5.7
	σ_r (pcm)	12.2	12.7	7.0	12.4	7.1	11.8	6.9

Cumulative real standard deviation for \mathbf{k}_{eff}

KNS 2018, Jeju, Korea, May 17-18, 2018

Error of power distribution

Carala	Demonster	Deveryotan MC		IMP = 1		IMP = 2		IMP = 3	
Cycle	Parameter	MC	CMFD	DTMC	CMFD	DTMC	CMFD	DTMC	
1	RMS (%)	4.20	4.22	3.77	4.07	3.64	3.99	3.57	
1	ϵ_{avg} (%)	3.44	3.46	3.09	3.02	2.70	2.82	2.53	
5	RMS	2.46	2.47	2.37	2.38	2.28	2.34	2.24	
	ϵ_{avg}	2.01	2.03	1.95	1.78	1.71	1.66	1.60	
	RMS	1.83	1.83	1.78	1.78	1.73	1.75	1.70	
10	ϵ_{avg}	1.50	1.50	1.46	1.33	1.30	1.25	1.21	
20	RMS	1.33	1.33	1.30	1.30	1.27	1.28	1.25	
20	ϵ_{avg}	1.09	1.09	1.07	0.98	0.97	0.92	0.91	
100	RMS	0.62	0.62	0.61	0.63	0.63	0.63	0.62	
100	ϵ_{avg}	0.50	0.51	0.50	0.51	0.50	0.49	0.49	

Relative error distribution (%)

 $- 1^{st} layer, IMP = 3$

KNS 2018, Jeju, Korea, May 17-18, 2018

Computing time

- Computing time was increased to track split neutrons, especially fission neutrons

Parameter	Standard MC	CMFD & DTMC			
	Standard MC	IMP = 1	IMP = 2	IMP = 3	
Computing time (min)	49	58	73	81	

 Higher importance can be applied only in the reflector region to minimize the computing time

Methods (2)

Vacuum boundary condition with irregular nodes

- CMFD domain is extended to actual boundary surface
- The CMFD parameters in reflector can be more reliable with irregular node

Multiplication factor

Crale	Donomotor	Standard MC -	Albedo BC		Vacuum BC	
	rarameter	Stanuaru MC -	CMFD	DTMC	CMFD	DTMC
	$k_{ m eff}$	1.12867	1.12845	1.12821	1.12805	1.12827
1	σ _a (pcm)	-	-	-	-	-
	σ _r (pcm)	86.8	79.1	38.7	69.0	38.4
	$k_{ m eff}$	1.12783	1.12834	1.12826	1.12895	1.12862
5	σ _a (pcm)	41.4	41.2	23.0	34.8	17.4
	σ _r (pcm)	54.7	51.4	26.7	35.7	19.5
	$k_{ m eff}$	1.12787	1.12826	1.12842	1.12824	1.12827
10	σ _a (pcm)	31.4	31.7	17.0	26.9	13.4
	σ _r (pcm)	41.7	35.5	22.0	24.1	13.8
	$k_{ m eff}$	1.12810	1.12807	1.12824	1.12842	1.12833
20	σ _a (pcm)	21.8	23.5	12.3	19.8	9.8
	σ _r (pcm)	26.6	26.4	15.3	20.8	12.3
	$k_{ m eff}$	1.12819	1.12811	1.12818	1.12824	1.12818
100	σ_a (pcm)	10.2	11.1	5.9	9.0	4.8
	σ_r (pcm)	12.3	13.5	7.0	9.7	6.2

Cumulative real standard deviation for k_{eff}

KNS 2018, Jeju, Korea, May 17-18, 2018

Power distribution

Cyclo	Donomotor	Stondard MC	Alb	edo	Vacuum	
Cycle	Parameter	Stanuaru MC	CMFD	DTMC	CMFD	DTMC
1	ϵ_{avg}	0.625	0.633	0.563	0.515	0.460
1	ϵ_{max}	4.610	4.370	4.218	3.479	3.255
5	ϵ_{avg}	0.366	0.372	0.356	0.299	0.287
5	ε _{max}	2.817	2.768	2.733	2.200	1.977
	ϵ_{avg}	0.274	0.274	0.267	0.223	0.217
10	ε _{max}	2.095	2.237	2.096	1.656	1.563
20	ϵ_{avg}	0.198	0.198	0.194	0.163	0.159
20	ε _{max}	1.453	1.489	1.449	1.152	1.156
100	ε _{avg}	0.092	0.092	0.091	0.076	0.075
100	ε _{max}	0.712	0.687	0.696	0.552	0.538

 ε_{avg} : average relative error

 ε_{\max} : maximum relative error

RMS error distribution for power distribution

- Albedo BC

RMS error distribution for power distribution

- Vacuum BC

Computing time

- Computing time was somewhat increased for the CMFD computation

Parameter	Standard MC	Albe	Albedo BC Vacuum		ım BC
	Stanuaru MC	CMFD	DTMC	CMFD	DTMC
Computing time (min)	47	52		55	
$\sigma_{\rm a}$ for $k_{\rm eff}$	10.2	11.0	5.9	9.0	4.8
Figure-of-merit	3.41E+04	2.65E+04	9.21E+04	3.74E+04	1.39E+05

Vacuum boundary condition with weight adjustment method can further improve the solution

Concluding Remarks

Summary & Conclusions

- Method I : weight adjustment method
- The DTMC solution was improved with the optimization of boundary condition
- The power became more reliable especially near boundary with weight adjustment
- The computing time was increased with the higher cell importance
- Method II : vacuum boundary condition
- The weight adjustment only within the reflector can minimize the computing time
- The stochastic uncertainty and error were noticeably decreased with vacuum BC
- It is expected that the weight adjustment with vacuum BC can further improve the solution

Concluding Remarks

Future work

- Vacuum BC & weight adjustment in the reflector region
- Application n big size reactor problem

KNS 2018, Jeju, Korea, May 17-18, 2018

Thank you for your attention

Backup Slides

CMFD method (1/4)

Basic theory of CMFD method

- The balance equation by integrating the diffusion equation over a node

$$J^{i+1/2} - J^{i-1/2} + \Sigma_a^i \phi^i = S^i$$
 (1)

where

- J : net current
- ϕ : neutron flux
- Σ_a : absorption cross section
- S : fission source
- The net neutron flow within the node is preserved by reference net current

$$J^{i+1/2} = -\tilde{D}^{i+1/2}(\phi^{i+1} - \phi^{i}) + \hat{D}^{i+1/2}(\phi^{i+1} + \phi^{i})$$
(2)

where

$$\tilde{D} = \frac{2d^{i+1}d^i}{d^{i+1} + d^i}$$
: effective diffusion coefficient
$$d = D / \Delta x$$
: unit diffusion coefficient

- The correction factor is calculated by

$$\hat{D} = \frac{\vec{J}_{MC}^{i+1/2} + \tilde{D}^{i+1/2}(\phi_{MC}^{i+1} - \phi_{MC}^{i})}{\phi_{MC}^{i+1} + \phi_{MC}^{i}}$$
(3)

CMFD method (2/4)

Basic theory of p-CMFD method

- The balance equation by integrating the diffusion equation over a node

$$J^{i+1/2} - J^{i-1/2} + \Sigma^{i}_{a} \phi^{i} = S^{i}$$
⁽¹⁾

- The net neutron flow within the node is preserved by reference two partial currents

$$J^{+,i+1/2} = -0.5\tilde{D}^{i+1/2}(\phi^{i+1/2} - \phi^{i}) + \hat{D}^{+,i+1/2}\phi^{i}$$
(4.a)

$$J^{-,i+1/2} = +0.5\tilde{D}^{i+1/2}(\phi^{i+1/2} - \phi^{i}) + \hat{D}^{-,i+1/2}\phi^{i+1}$$
(4.b)

- The correction factors are calculated by

$$\hat{D}^{+,i+1/2} = \frac{\vec{J}_{MC}^{+,i+1/2} + 0.5\tilde{D}^{i+1/2}(\phi_{MC}^{i+1} - \phi_{MC}^{i})}{\phi_{MC}^{i}}$$
(5.a)
$$\hat{D}^{-,i+1/2} = \frac{\vec{J}_{MC}^{-,i+1/2} - 0.5\tilde{D}^{i+1/2}(\phi_{MC}^{i+1} - \phi_{MC}^{i})}{\phi_{MC}^{i+1}}$$
(5.b)

CMFD method (3/4)

CMFD parameters

Neutron current

$$\phi = \int \phi(\vec{r}, E) dE dV \tag{6}$$

Neutron flux

$$J^{+} = \int_{\Omega^{+}} \Omega \cdot \varphi(\vec{r}, \Omega, E) d\Omega$$
 (7.a)

$$J^{-} = \int_{\Omega^{-}} \Omega \cdot \varphi(\vec{r}, \Omega, E) d\Omega$$
 (7.b)

- Group constant

$$\Sigma_{\alpha} = \frac{\int \int \Sigma_{\alpha}(\vec{r}, E)\phi(\vec{r}, E)dEdV}{\int \int \phi(\vec{r}, E)dEdV}$$
(8)

CMFD method (4/4)

Numerical treatments for CMFD in MC method

Boundary condition

• The correction factor is defined by the ratio of current and flux as in rebalance method

$$\hat{D} = J / \phi \tag{9}$$

- Weight adjustment

• Particles' weight is adjusted by the ratio of the fission source probability

$$w_{j}^{'} = w_{j} \times \frac{\nu \Sigma_{f} \phi_{i}^{CMFD} / \sum_{i} \nu \Sigma_{f} \phi_{i}^{CMFD}}{\nu \Sigma_{f} \phi_{j}^{MC} / \sum_{j} \nu \Sigma_{f} \phi_{j}^{MC}}$$
(10)

Convergence of FSD

Shannon entropy with different generation sizes

Simulation Code

In-house MC code

- In-house MC code for neutronic analysis
- 3D pin-lattice geometry
- Multi-group energy
- Continuous energy (under development)
- CMFD & p-CMFD acceleration scheme

Real standard deviation distribution of pin power

- 1st layer (near mid-plane)

KNS 2018, Jeju, Korea, May 17-18, 2018

Optimal generation size in MC & CMFD calculation

- Enhances the efficiency of the simulation
- Guarantees the convergence of the calculation

Particle ramp-up method (A. L. Lund, P. K. Romano, A. R. Siegel)

- A procedure for accelerating convergence of the source distribution
- Roughly converge using fewer particles per generation and increase the number of particles

Algorithm of modified particle ramp-up technique

- N_0 : initial number of histories
- i : cycle number
- *e* : Shannon entropy

$$\overline{e}_i^1 = \frac{e_{i-l+1} + \dots + e_i}{l}$$
$$\overline{e}_i^0 = \frac{e_{i-2l+1} + \dots + e_{i-l}}{l}$$

- *l* : accumulation length
- ΔN : increment of generation size
- j : cycle number before N changes
- \mathcal{E}_1 : convergence criterion
- ε_2 : stopping criterion

Apparent standard deviation of $k_{\rm eff}$

KNS 2018, Jeju, Korea, May 17-18, 2018

Cycle-wise multiplication factor with stochastic uncertainty

- Standard MC

Cycle-wise multiplication factor with stochastic uncertainty

Cycle-wise multiplication factor with stochastic uncertainty

– DTMC

Cycle-wise multiplication factor with stochastic uncertainty

Cycle-wise multiplication factor with stochastic uncertainty

– pDTMC

KNS 2018, Jeju, Korea, May 17-18, 2018

- Center region; (i,j,k) = (1,2,1)
- Standard MC

- Center region; $(i_{3}j,k) = (1,2,1)$
- CMFD

Cycle-wise normalized power level at specific cell 1

- Center region; $(i_{3}j_{1}k) = (1,2,1)$
- DTMC

KNS 2018, Jeju, Korea, May 17-18, 2018

- Center region; $(i_{3}j_{1}k) = (1,2,1)$
- p-CMFD

- Center region; $(i_{3}j_{1}k) = (1,2,1)$
- pDTMC

- Near boundary region; $(i_{3}j_{1},k) = (34,34,2)$
- Standard MC

- Near boundary region; $(i_{,j},k) = (34,34,2)$
- CMFD

- Near boundary region; $(i_{3}j_{1},k) = (34,34,2)$
- DTMC

- Near boundary region; $(i_{3}j_{1},k) = (34,34,2)$
- p-CMFD

- Near boundary region; $(i_{3}j_{1},k) = (34,34,2)$
- pDTMC

Computing time and figure-of-merit (FOM) for k_{eff}

- The computing time of the MC simulation is estimated with a single core

Method	k _{eff}	$\sigma_{a}\left(pcm\right)$	Time (min)	FOM
Reference	1.12808	1.7	1867	3.09E+4
Stand-alone MC	1.12819	9.6	46	3.86E+4
CMFD	1.12813	10.8	7 4	2.62E+4
DTMC	1.12807	5.4	54	1.05E+5
p-CMFD	1.12812	10.7	50	2.76E+4
pDTMC	1.12811	5.0	52	1.22E+5
CRX w/o p-CMFD	1.12822	-	4,708*	-
CRX w/ p-CMFD	1.12822	-	871*	-

* Indirect estimation

: calculation time is indirectly estimated under the assumption that the parallel efficiency is 60%

- CRX : conventional deterministic code

- Whole core 3D transport code based on 2D/1D fusion method
- 32 radial cells per modular fuel pin cell and 36 radial cells per modular reflector pin cell
- 3.57 cm in the axial direction, and 8 azimuthal and 3 polar angles per octant with 50 rays per cell per angle