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1. Introduction 

 
Nowadays the accelerator-driven subcritical system 

(ADS) has been widely studied as a candidate of 

transmutation reactor.[1] Applications of the 

conventional point kinetics equation (PKE) [2] using the 

k-adjoint weighted kinetics parameters may be invalid 

for the time-dependent ADS analysis because it assumes 

[3] that its nominal state is critical. In order to enhance 

the accuracy of the point kinetics analysis for an ADS, 

Nishihara et al. [3] proposed a PKE using kinetics 

parameters weighted by Green’s function [4]. In  our 

previous research [5], we proposed a PKE formulation 

with kinetics parameters weighted by the α-adjoint flux, 

the fundamental mode solution to the adjoint α-mode 

eigenvalue equation, because the α-mode eigenvalue 

equation can accurately represent an off-critical system.  

In this paper, the physical meaning of the α-adjoint 

flux is derived by applying the power iteration method 

for the α-mode eigenvalue equation. Using this physical 

meaning, algorithms to calculate the α-adjoint weighted 

kinetics parameters in the Monte Carlo (MC) α iteration 

method [6] are developed and tested in an infinite 

homogeneous 2-group problem and the KUCA Th-ADS 

experimental benchmark.[7] 

 

2. Methods 

 

2.1 New point kinetic equation 

 

The PKE based on the adjoint α-mode eigenvalue 

equation has been derived as [5] 
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†

  denotes the -adjoint flux. ci(r,E,,t) is defined by  

  4 ( , )i iE C t  r  where ( )i E  and Ci(r,t) are the 

fission spectrum and the delayed neutron precursor 

density, respectively, for the i-th precursor group. Other 

notations follow standards. 

The time-dependent loss and fission production 

operators, denoted by L and F, respectively, are defined 

as 
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while their counter operators for the nominal state are 

defined by 
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The subscript “0” indicates the nominal state of the 

subcritical system. 

The i-th delayed neutron production operator, Fi is 

defined by  
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2.2 Physical meaning of the α-adjoint 
 

The adjoint form of mode eigenvalue equation can 

be expressed as [6] 
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where the j-th transport kernel Kj is defined with 

transport kernel K, free flight kernel T and collision 

kernel C as 
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An application of the power iteration method for Eq. 

(13) gives 
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Equation (20)  can be expressed in an integral form as 
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 , , , ,  n E ER r Ω r Ω  is number of time source at 

, ,  Er Ω produced in the n-th iteration due to a unit 

time source located at , ,Er Ω . When  †

, , , 1 init Er Ω , 

 †

, , , n Er Ω  can be interpreted as the number of time 

source produced in the n-th iteration due to a unit time 

source located at , ,Er Ω . If n is large enough to 

converge, †

  can be approximated by †

, n . 
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2.3 Calculation of the α-adjoint weighted kinetics 

parameters in α-iteration 

 

The definition of the α-adjoint weighted kinetics 

parameters are Eq. (3), (4), (5). The shape function ψ is 

approximated as ϕ, eigenfunction of α-mode eigenvalue 

equation. 

 

 
 †

†

, /

,

v





 

 
 i

E

F
  (23) 

 
 

†

1 1

1 1 1
,
v v


 

 
 

  
       

 
i ij ijk iM K

i ijk ijk i n
j k t

w

E M
  (24) 

 
( 1)

†

( 1)
1 1

1
,

v


 

  

  
 

  
       

 
i ij ijk i i n j kM K k

i ijk ijk i n j k
k Fissionj k t

w w

M w
F  (25) 

 

Superscripts i, j and k are iteration, history and 

collision indices. Superscripts j  and k  are the history 

and collision indices of the (i-n+1)-th iteration from 

which the j-th time source of iteration i is generated. k  

is collision index of (i-n+1)-th iteration and j -th 

history neutron. 

In the denominator term, 𝐅𝜙 is weight of neutron 

generated from fission. In
† , F , adjoint of 𝐅𝜙 is 

number of time source which one neutron generated 

from fission. Then, 𝐅𝜙 is divided by weight. In the 

numerator, when i-n+1 iteration, j -th history neutron 

induce a time source at k -th collision, this one time 

source represents 1/𝛼 time source. 

 

Figure 1. Fission neutrons and induced time sources 

Like figure 1, we can suppose that one neutron 

produces two neutron by fission and induces 4 time 

source and fissions again during this flight. The adjoint 

of upper neutron between two fission neutrons produced 

by first fission expressed as Fis1 is number of time 

source after n iteration induced by time sources 1

tS , 2

tS , 

4

tS . The adjoint of lower neutron between two fission 

neutrons produced by Fis1 is number of time source 

after n iteration induced by time source 3

tS . The adjoint 

of neutron produced by second fission expressed as Fis2 

is number of time source after n iteration induced by 

time source 4

tS . Fis1 and Fis2 share time source 4

tS . 

Therefore, when j -th history of time source induce 

fission, we sum 1 for each fission neutron before k -th 

collision inducing time source as form of 
k

k Fission





 to 

calculate 𝐅𝜙.  
The weight function for the denominator and 

numerator, α adjoint is 
1
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 which is 

number of time source induced in i-th iteration. The 

term 
ijk i

ijk ijk
t

w 

 v
 is number of time source induced at k-th 

collision of j-th history neutron in i-th iteration. 
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Indices and denominator term is same with prompt 

neutron generation time. In the numerator 
† ,  F , 

𝛽𝐅𝜙 is weight of neutron generated from delayed 

fission. 

 

3. Numerical Results 

 
3.1 The adjoint weighted kinetics parameters in the 

infinite homogeneous problem 

 

The proposed method to calculate the -adjoint 

weighted kinetics parameters is verified for an infinite 

homogeneous problem characterized by two-group 

cross sections given in Table 1. The precursor decay 

constant is 0.2. By multiplying constants to fission cross 

section, multiplication factors are modified to 0.65, 0.7, 

0.8, 0.9, 0.95, 0.98, 0.99. 

The MC α iteration and k-eigenvalue calculations 

were conducted with 200 active iterations on 1,000,000 

sources per iteration except kinf 0.98, 0.99 cases for MC 

α iteration calculations, which were conducted with 200 

active iterations on 500,000 sources per iteration. Table 

2 shows the comparison of MC estimates of α and k-

eigenvalue and their analytic solutions. Table 3, 4 show 

the comparison of MC estimates of the adjoint weighted 

kinetic parameters and their analytic solutions. From 

table 2, 3, 4, one can see that the MC estimates agree 

well with the references within their 95% confidence 

intervals. 
 

Table 1. 2-group cross-section for the infinite homogeneous 

problem 

Cross section g=1 g=2 

Σ
tg

 0.507132083 1.247472 

Σ
fg

 0.00268023 0.0522913 

ν
pg

 2.400 2.400 

Σ
sgg

 0.4798 1.085 

Σ
sg'g

(gg') 0.01453 0.001889 

β
0
 0.006 0.006 

1/v
g
[sec/cm] 

2.28626110
-10

 1.29329110
-6

 

 

Table 2. Estimated value of α and kinf for the infinite 

homogeneous problem  

kinf 
α 

(Rel. SD) 

Analytic  

Value 

(Rel. error) 

kinf 

(Rel. SD) 

Analytic  

Value 

(Rel. error) 

0.65 
57104.49 

(0.002%) 

57104.10 

(0.001%) 

0.65502 

(0.003%) 

0.65000 

(0.003%) 

0.7 
50129.70 

(0.007%) 

50128.48 

(0.002%) 

0.70000 

(0.003%) 

0.70000 

(0%) 

0.8 
35111.44 

(0.009%) 

35114.70 

(-0.009%) 

0.79999 

(0.003%) 

0.80000 

(-0.001%) 

0.9 
18498.65 

(0.014%) 

18495.48 

(0.017%) 

0.90003 

(0.003%) 

0.90000 

(0.003%) 

0.95 
9498.36 

(0.020%) 

9501.50 

(-0.033%) 

0.95002 

(0.003%) 

0.95000 

(0.002%) 

0.98 
3864.74 

(0.055%) 

3864.21 

(0.014%) 

0.97998 

(0.003%) 

0.98000 

(-0.002%) 

0.99 
1943.62 

(0.070%) 

1942.94 

(0.035%) 

0.98997 

(0.003%) 

0.99000 

(-0.003%) 

  

Table 3. Effective delayed neutron fraction in the infinite 

homogeneous problem  

kinf 
,eff   

(Rel. SD) 

Analytic 

Value 

(Rel. error) 

eff   

(Rel. SD) 

Analytic 

Value 

(Rel. error) 

0.65 
6.0070110-3 

(0.326%) 

0.006 

(0.117%) 

6.0043610-3 

(0.314%) 

0.006 

(0.073%) 

0.7 
5.9728110-3 

(0.303%) 

0.006 

(-0.453%) 

5.9863010-3 

(0.297%) 

0.006 

(-0.228%) 

0.8 
6.0096510-3 

(0.270%) 

0.006 

(0.161%) 

5.9954210-3 

(0.281%) 

0.006 

(-0.076%) 

0.9 
5.9917510-3 

(0.217%) 

0.006 

(-0.138%) 

6.0017510-3 

(0.286%) 

0.006 

(0.029%) 

0.95 
5.9986410-3 

(0.228%) 

0.006 

(-0.023%) 

5.9876510-3 

(0.306%) 

0.006 

(-0.206) 

0.98 
6.0157010-3 

(0.293%) 

0.006 

(0.262%) 

6.0047710-3 

(0.287%) 

0.006 

(0.080%) 

0.99 
5.9794710-3 

(0.260%) 

0.006 

(-0.342%) 

6.0181410-3 

(0.312%) 

0.006 

(0.302%) 

 

Table 4. Effective prompt neutron generation time in the 

infinite homogeneous problem 

kinf 
,eff   

(Rel. SD) 

Analytic 

Value 

(Rel. error) 

 eff   

(Rel. SD) 

Analytic 

Value 

(Rel. error) 

0.65 
1.1296110-5 

(0.014%) 

1.1293910-5 

(0.019%) 

7.8747910-6 

(0.038%) 

7.8737910-6 

(0.013%) 

0.7 
1.0001110-6 

(0.043%) 

9.9981610-6 

(0.029%) 

7.3121010-6 

(0.040%) 

7.3113710-6 

(0.010%) 

0.8 
7.9279910-6 

(0.052%) 

7.9234710-6 

(0.057%) 

6.3956910-6 

(0.033%) 

6.3974510-6 

(-0.028%) 

0.9 
6.3438810-6 

(0.068%) 

6.3465110-6 

(-0.041%) 

5.6874310-6 

(0.036%) 

5.6866210-6 

(0.014%) 

0.95 
5.6933010-6 

(0.082%) 

5.6955610-6 

(-0.040%) 

5.3910010-6 

(0.036%) 

5.3873210-6 

(0.068%) 

0.98 
5.3246310-6 

(0.193%) 

5.3409210-6 

(-0.305%) 

5.2214710-6 

(0.035%) 

5.2224110-6 

(-0.018%) 

0.99 
5.2361610-6 

(0.251%) 

5.2281410-6 

(0.153%) 

5.1715110-6 

(0.035%) 

5.1696510-6 

(-0.036%) 

 

3.2 Application results of the PKE in the KUCA A 

Core Th-ADS Experiment 

 

The α–PKE was be tested by thorium-loaded 

accelerator-driven system (Th-ADS) at Kyoto 

University Critical Assembly (KUCA) [7] by comparing 

MC PNS results. Th-HEU-5PE fuel case was tested. 

The 𝜶-PKE and k-PKE were applied and compared 

with MC PNS results. MC PNS experiment result with 
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14 MeV neutrons source was detected at 3He #1, 2 

detector.[6] 

The prompt neutron decay constant is compared at 

table 5. We can see that the 𝛼 iteration results are quite 

comparable with the experimental results because two 

estimates from different detectors show good 

agreements. 

The kinetics parameters are compared at table 6. 

Effective delayed neutron fractions agree well with the 

references within their 95% confidence intervals.  

Relative difference of prompt neutron generation times 

is 27.33% because of different spectrum. 
 

Table 5. Prompt neutron decay constants 

 Measurements  MC PNS 

simulation[6] 

MC 𝛼 

iteration 3He #1[6] 3He #2[6] 

αp 

(SD) 
-3110 (11) -3104 (10) 

-2977.1 

(1.4) 

-2948.6 

(1.8) 
 

Table 6. Effective delayed neutron fraction and prompt 

neutron generation time 

 Effective delayed  

neutron fraction 

Prompt neutron 

generation time 

,eff  eff   ,eff   eff  

Estimated 

Value 

(Rel. sd) 

8.06946×10-3 

(0.789%) 

8.06183×10-3 

(0.131%) 

6.92151×10-5 

(0.202%) 

5.43591×10-5 

(0.016%) 

Rel. 

Difference 
0.10% 27.33% 

 

Fitting was conducted to the amplitude functions Pα(t) 

and Pk(t), solutions of PKEs, with MC PNS data from 

t=0.001 to t=0.003 using least square method with 

mathematica. 

 

Figure 2. Comparison of amplitude function fitted to count 

rate at detector #1 

 

Figure 3. Comparison of amplitude function fitted to count 

rate at detector #2 

In two graph, Pα(t) is closer to MC PNS results. From 

t=0.001 to t=0.003, average relative errors are 

compared at table 7. The average relative error of Pk(t) 

is bigger than Pα(t) about 143% at detector 1 and 182% 

at detector 2.  
 

Table 7. Average relative error of fitting function 

 3He #1 3He #2 

Pα(t) Pk(t) Pα(t) Pk(t) 

Rel. error[%] -8.694% -21.123% -7.065% -19.934% 
 

4. Conclusions 

 

The physical meaning of the α-adjoint is explained. 

The algorithms to calculate the required kinetics 

parameters is suggested for the MC  iteration 

calculations. In the two group infinite homogeneous 

problem, the MC estimated the adjoint weighted 

kinetics parameters agree well with the references 

within their 95% confidence intervals. In the KUCA A 

Core Th-ADS Experiment, PKE and k-PKE were 

applied and compared. When shape of fitting graphs and 

average relative errors are considered, estimation of 

PKE is more accurate at the KUCA A Core Th-ADS 

PNS Experiment. 
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