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1. Introduction 

 
A new method of decomposing nuclide concen-

tration vector into two blocks is introduced in this paper. 

It is tested on a sample problem that includes very 

short-lived nuclides and compared with the ORIGEN 

2.2 [1] and Krylov subspace methods [2, 3]. 

 

2. Two-Block Decomposition of Nuclide 

Concentration Vector 

 

2.1 Two-Block Decomposition of System of Bateman 

Equations 

 

The system of Bateman equations is written as : 

      0,    (0) ,X AX X X    (1) 

where 

 : nuclide concentration vector,

 : burnup matrix.
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Depending on the magnitude of the “effective” decay 

constant of nuclide i, 
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the nuclide concentration vector X  is decomposed into 

two blocks, short-lived nuclide block and long-lived 

nuclide block. Then, Eq. (1) is decomposed as :  

   ,
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X A X A X   (3a) 

   .
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X A X A X   (3b) 

The two blocks are calculated separately but with 

coupling, as in the following. 

 

2.2 Short-Lived Nuclide Block Calculation by Bateman 

Solutions and Importance Concept 

 

Due to very large norm of AS, Eq. (3a) is solved by 

using the general Bateman solution [4] for each nuclide 

in the short-lived nuclide block. 

To reduce computational burden in Bateman solution 

calculations, we introduce an “importance” concept for 

selecting important nuclides that produce a particular 

short-lived nuclide.  

Consider the reaction chain involving production of 

short-lived nuclide s shown in Fig. 1.  

 

 
Fig. 1: Example of Reaction Chain 

The importance of parent q for production of short-

lived nuclide s from time t to t+∆t, IMPs,q(t,t+Δt), is 

defined as : 
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 

,

i

 : production reaction rate of nuclide  from nuclide ,

 : number of effective decay constants 's making  

1
 infinite,

1,  , ,

( , ) : Kronecker delta function.
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The nuclide q is selected as an important nuclide for 

production of short-lived nuclide s if IMPs,q(t,t+Δt) is 

larger than criterion (IMP) set by the user. 

With only important parents for the short-lived 

nuclide s, general Bateman solution is written as: 
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where 

( ) ( ),

: number of important nuclides determined by 

importance calculation, ( ).
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2.3 Long-Lived Nuclide Block Calculation with Time-

Dependent Short-Lived Nuclide Concentrations   

 

The solution of long-lived nuclide block, Eq. (3b) is 

expressed as : 
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where  

i=1

: number of Gaussian quadrature set,

: weights for Gaussian quadrature, ,

: abscissas for Gaussian quadrature, , .
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 In contrast to AS in Eq. (3a), the norm of AL is small 

enough to calculate matrix exponentials efficiently in 

Eq. (8). 

 

3. Numerical Results 

 

In order to get a realistic initial condition, 3.19w/o 

enriched PWR fuel is burned for 100 days by the 

ORIGEN code [1] with Δt=20 days. Then the 100 days 

burned PWR fuel is irradiated by constant neutron flux 

1.98E+14#/cm
3
-sec for 20 days. The burnup matrix 

consists of 976 nuclides. Reference calculation is per-

formed by simple Taylor series expansion with the 

ORIGEN code using a small time steps (Δt=2.0E-07 

days) and a large number of expansion terms (70 terms). 

Computing time of the reference calculation is 

1.668E+05 sec (~1.30 days) on Intel i5 2.67-GHz CPU.  

The magnitude of the effective decay constant used 

for decomposition is
eff

i
t   =|ln(0.001)|~6.9 (as used in 

ORIGEN 2.2 for its own treatment of short-lived 

nuclides). The decomposition method calculations are 

performed for various IMPs with a fixed number of Gn 

(Gn=20) and Δt (Δt=20 days and 1 day).  

The method is compared with the ORIGEN code and 

Krylov subspace method with Chebyshev Rational 

Approximation (Krylov+CRA) [2]. Krylov subspace      

method with Padé approximation [3] diverges for all 

Krylov subspaces, since the norm of A is too large 

(~2.92136E+11). The results are summarized in Fig. 3 

and Fig. 4. 
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Fig. 3. Maximum errors vs computing time 
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Fig. 4. Relative RMS errors vs computing time 

The ORIGEN code calculations are performed for 

various time steps. The Krylov+CRA calculations are 

performed for various Krylov subspaces.  

Sufficient accuracies in relative RMS errors (RMSE) 

and maximum errors (MAXE) are obtained by the two-

block decomposition method (1.09E-03% in MAXE, 

3.89E-07 in RMSE) with sufficient IMP (IMP≤1.0E-03). 

Computing time of the method for IMP=1.0E-03 and 

∆t=1 day is 3.75 sec, while that of Krylov+CRA at 

m=700 and ∆t=5 days is 25.52 sec for similar accuracy 

(2.09% in MAXE, 2.21E-04 in RMSE).  

The two-block decomposition method results (∆t=1 

day, IMP=1.0E-03, 599 short-lived nuclides) and the 

ORIGEN results (∆t=0.025 days, 53 terms in simple 

Taylor series expansion, 495 short-lived nuclides) are 

compared for the similar computing times. The relative 

errors of 10 nuclides for which ORIGEN results show 

discrepancies >3.6% are shown in Table 1. 

 
Table 1 : Relative errors of 10 nuclides 

Nu-

clide 

Relative error (%) 
Nu-

clide 

Relative error (%) 

ORI- 

GEN 
Two-

block 
ORI-

GEN 

Two-

block  

Pd-109 9.46 4.32E-06 Ag-113 6.17 9.18E-07 

Pd-109 

m 
-13.46 -1.18E-06 Cd-113 5.23 -4.41E-07 

Ag-109 

m 
9.55 -6.49E-05 Pr-148 -4.60 -1.47E-06 

Ag-111 4.63 -1.36E-05 Pm-153 -4.52 -2.50E-06 

Ag-111 

m 
3.87 -4.42E-05 Pm-154 -3.61 -2.52E-06 

 
In the ORIGEN results, the 10 nuclides show 

considerable discrepancies (13.46% in MAXE, 8.67E-

03 in RMSE), while the two-block decomposition 

method shows much reduced discrepancies (1.09E-03% 

in MAXE, 3.89E-07 in RMSE). 

 

4. Conclusions 

 

In this paper, two-block decomposition of the nuclide 

concentration vector is introduced for efficient and 

accurate depletion calculations and its performance was 

compared to those of existing methods. 

With a wide range of importance values, the two-

block decomposition method shows remarkably im-

proved results, e.g., ~10 times speedup in computing 

time for similar accuracy compared to the Krylov 

subspace method. For similar computing time, the two-

block decomposition method shows 1000 times smaller 

MAXE and RMSE compared to the ORIGEN code.  
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