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1. Introduction 

 

A common method of radiation imaging is 

mechanical collimation which shows good 

performance at the low radiation energy and the other 

is electronic collimation whose angular resolution is 

better at higher radiation energy [1-3]. Many 

researchers have developed equipment combining 

two kinds of collimation methods showing good 

performance in wide range of radiation energy. [4-8]. 

However, most of them used passive collimators 

made of high Z material such as Pb or W and the 

scattered radiations in the mechanical collimator 

were regarded as noise events and discarded. In this 

research, the mechanical collimator itself was 

replaced by a sensitive detector consisting of a URA 

patterned scintillator. Since our sensitive collimation 

could be used as both mechanical can electronic 

collimation simultaneously,  the scattered radiation 

in the mechanical collimation, which was discarded 

in the conventional gamma cameras, was recovered 

as an effective event for the electronic collimation 

(Compton imaging) to reconstruct the radiation 

image. As a result, the detection efficiency and image 

quality can be dramatically increased. The sensitive 

collimation using both mechanical and electronic 

collimation, and hence it can cover very broad 

energy range (several keV ~ MeV) of the incident 

radiation. We developed sensitive collimation using 

10 14 URA patterned scintillator whose spatial 

resolution was improved in comparison of the 

previous prototype [9].  

 

2. Methods and Results 

 

2.1 Sensitive Collimator system 

 

As shown in the Figure 1 and 2, the active 

collimator was constructed with a 10 14 URA 

patterned BGO array coupled to a position sensitive 

photomultiplier tube (PSPMT) and the planar 

detector was made of a CsI(Na) array coupled a 

PSPMT(H8500). The BGO scintillator made by 

SICCAS technology, consisted of 20 28 pixels 

whose size was 1.5 1.5 5 mm
3
 each and the CsI(Na) 

scintillator made by Hilgus technology, consisted of 

20 20 pixels whose size was 2 2 5 mm
3
 each. The 

distance between the active collimator and planar 

detector was 3cm. This design was based on the  

optimized variables calculated by Monte Carlo 

simulation [10]. 

 

 
 

Fig.1. Active collimator (left) and planar detector (right) of 

the portable and active collimation system 

 

   
 

Fig.2. 10 14 URA patterned BGO (left) and Schematic 

diagram of the sensitive collimation system (right) 

 

2.2 performance of sensitive collimator 

 

The reconstruction images from mechanical, 

electronic, and dual collimation for a 356keV point 

source were shown in Figure 3. The images of dual 

collimation were shaper than those of electronic 

collimation and had fewer artifacts than those of 

mechanical collimation especially at high iteration. 

As show in Figure 4, the reconstructed images were 

quantitatively evaluated using resolution-variance 

curve. The curve of sensitive collimation was closer 

than those of other collimations to origin, which 

proved the superiority of the sensitive collimation 

method.  
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Fig.3. Reconstructed images using MLEM method for a 

356keV point source. Top, middle and bottom row are for 

mechanical, electronic and dual collimation, respectively. 

Left, middle and right column are for 1st, 30th, and 100th 

iteration, respectively 

 
Fig.4. Resolution-variance graph for a 662keV point source 

reconstructed by MLEM method. 

 

The reconstruction images from mechanical, 

electronic, and dual collimation for a 662keV point 

source were shown in Figure 5. The images of dual 

collimation were slightly smoother than those of 

electronic collimation and had much fewer artifacts 

than those of mechanical collimation especially at 

high iteration. As shown in Figure 6, the performance 

of the sensitive collimation was again better than 

those of the mechanical and electronic collimation 

method. 

  

 

 

 
Fig.5. Reconstructed images using MLEM method for a 

662keV point source. Top, middle and bottom row are for 

mechanical, electronic and dual collimation, respectively. 

Left, middle and right column are for 1st, 30th, and 100th 

iteration, respectively 

 

Fig.6. Resolution-variance graph for a 662keV point source 

reconstructed by MLEM method. 

 

3. Conclusions 

 

The portable and sensitive collimation was 

developed and its performance was evaluated. The 

sensitive collimation method showed its superiority 

to other collimation methods 
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