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1. Introduction 
 

Since a fuel cladding failure is the most important 
parameter in a core thermal-hydraulic design, the 
conceptual design stage only involves fuel assemblies. 
However, although non-fuel assemblies such as control 
rod, reflector, and B4C generate a relatively smaller 
thermal power compared to fuel assemblies, they also 
require independent flow allocation to properly cool 
down each assembly.  The thermal power in non-fuel 
assemblies is produced from both neutron and gamma 
energy, and thus the core thermal-hydraulic design 
including non-fuel assemblies should consider an 
energy redistribution by the gamma energy transport. 
To design non-fuel assemblies, the design-limiting 
parameters should be determined considering the 
thermal failure modes. While fuel assemblies set a 
limiting factor with cladding creep temperature to 
prevent a fission product ejection from the fuel rods, 
non-fuel assemblies restrict their outlet temperature to 
minimize thermally induced stress on the upper internal 
structure (UIS). 

This work employs a heat generation distribution 
reflecting both neutron and gamma transport. The 
whole core thermal-hydraulic design including fuel and 
non-fuel assemblies is then conducted using the 
SLTHEN (Steady-State LMR Thermal-Hydraulic 
Analysis Code Based on ENERGY Model) code [1]. 
The other procedures follow from the previous 
conceptual design [2]. 

     
2. Core Heat Generation 

 
During a nuclear reaction in a sodium-cooled fast 

reactor, the major heat sources are neutron and gamma 
rays. In the previous conceptual design, the neutron 
transport is only evaluated and the gamma transport is 
neglected. This means that a gamma ray is assumed to 
be simultaneously generated and absorbed in the same 
position during the nuclear reaction. As a result, heat 
generation in the fuel assemblies is overestimated and 
reveals conservative flow allocations. On the other hand, 
the non-fuel assemblies have less thermal power than 
the real values.  

To elucidate the heat generation rate in non-fuel 
assemblies, a detailed nuclear design including the 
gamma transport has been recently performed using the 
MCNP code, and its power distribution result is shown 
in Fig 1 [3]. To have a conservative thermal design, 
heat generation in the fuel assemblies comes from the 

previous conceptual design, and the non-fuel 
assemblies adopt the thermal power from the MCNP 
calculation. However, the control rod, reflector, and 
B4C assemblies are only involved in the present core 
thermal-hydraulic design. The other non-fuel 
assemblies such as IVS and radial shields are neglected 
because their heat generation rates are negligible, even 
when involving the gamma energy transport.  
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Fig. 1. Thermal power distribution considering both neutron 

and gamma transport. 
 

3. Thermal-Hydraulic Design 
 

In carrying out the core thermal-hydraulic design, 
several design criteria need to be met to assure proper 
performance and safety for the core and upper structure, 
where the design limits are highly related to 
temperature distribution in the fuel, cladding, and 
sodium under various operating conditions. For non-
fuel assemblies, the typical thermal design criterion is 
used to minimize the temperature difference between 
neighboring assemblies, which is highly related to a 
thermal striping failure of the upper internal structure. 
Therefore, each assembly outlet temperature should 
keep as close to the core average value as possible.  
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Fig. 2. Assembly index number for the SLTHEN code. 
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Fig. 3. Flow grouping diagram for the whole core analysis. 
 

Table I: Flow distribution results 
Flow 
Group 

No. 

Assembly 
 Type 

Assembly 
Flow 

 (kg/s) 

Group 
Flow 
(kg/s) 

Fraction 
(%) 

1  IC 26.52 1750.06 20.92 
2  IC 24.51 1323.52 15.82 
3  IC 22.75 682.53 8.16 
4  OC 26.91 807.16 9.65 
5  OC 24.68 592.26 7.08 
6  OC 22.62 678.62 8.11 
7  OC 19.05 457.11 5.46 
8  OC 17.15 308.69 3.69 
9  OC 15.38 184.58 2.21 

10  OC 13.82 165.80 1.98 
11  OC 13 312 3.73 
12  CR 1.44 36.08 0.43 
13  Ref 0.53 38.48 0.46 
14  B4C 0.57 44.18 0.53 

Etc. 
Inter assembly + IVS+ 

Radial shield etc.  
985.05 11.77 

Total     8366.1  100 
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Fig. 4. Outlet temperature distribution. 

 
In addition to the conceptual design with fuel 

assemblies, the whole core thermal-hydraulic design 
including non-fuel assemblies is performed. 
Considering the hexagonal repetition with a period of 
60o, the design of only a 1/6 core part was provided 
with a faster calculation time. Since fuel assemblies 
generate a large amount of thermal energy, they also 
need a massive coolant flow. This means that the heat 
transfer in a fuel assembly is purely convective, and the 
assembly boundary conditions rarely affect the 
temperature distribution. However, the non-fuel 
assemblies have much a smaller coolant flow, and the 

heat transfer between neighboring assemblies is highly 
important. Therefore, the present core thermal-
hydraulic design utilizes the whole core analysis as 
shown in Fig. 2. The flow grouping with a 1/6 core and 
repetitive application to the whole core are performed 
based on the assembly power rate, as shown in Fig 3. 
The non-fuel assemblies are made using a single group 
dependent on their type.   

The representative core flow grouping results for the 
whole core analysis are detailed in Table I. 14 flow 
groups in total were specified for the present core 
design, as shown in this table, where the inner core fuel 
assemblies utilize 3 flow groups, and the outer core fuel 
assemblies utilize 8 flow groups. Most of the flow is 
distributed to the fuel assemblies owing to the huge 
portion of thermal power. The control rod, reflector, 
and B4C assemblies have flow allocations of 0.43, 0.46 
and 0.53%, respectively, which are significantly smaller 
than those of the fuel assembly but cannot be neglected.  
The remaining flow rates for inter-assembly, IVS, radial 
shield, etc. were about 11.77%. The entire core region 
was kept below the limiting temperatures. The outlet 
temperature distribution of the whole core is displayed 
in Fig. 4, and indicates the neighboring assemblies 
having the most temperature difference. The maximum 
temperature difference exiting in adjacent assemblies 
was 81.9oC, which assure the structural integrity of the 
upper internal structures.  
 

4. Conclusions 
A whole core thermal-hydraulic analysis including 

fuel, control rod, reflector and B4C assemblies was 
performed based on the neutron and gamma energy 
transport. The design limiting criteria for fuel and non-
fuel assemblies are the cladding mid-wall temperature 
and assembly outlet temperature, respectively. The 
results show that the present design provides enough 
thermal margins considering the temperature 
distribution and remaining flow quantity.  
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