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1. Introduction 

 

To utilize high-fidelity simulation for 

computationally intensive engineering applications such 

as sensitivity analysis and uncertainty quantification, the 

surrogate modeling techniques have become an 

indispensible tool and have been widely used. However, 

for reactor physics problems that can be characterized 

as very large number of input parameters (i.e. reaction 

cross sections), the required computational cost to build 

a surrogate model itself would be impractical with the 

sole conventional surrogate modeling techniques. We 

have been exploring the efficient way of reducing the 

computational cost in surrogate modeling and 

contributed the surrogate approach incorporated with 

reduced order modeling techniques [1]. 

Basic approach summarized in Ref. [1] is to 

transform the input parameters into low dimension by 

hybridizing two prominent methods - variational 

methods and sampling methods. As a preprocessing for 

the surrogate modeling, the influential subspace of the 

input parameters with respect to response change is 

extracted by range finding algorithm and the input 

parameters are projected onto that subspace. Because 

the number of subspace basis vectors are much smaller 

than the number of input parameters, reduced order 

form of the surrogate model can be constructed, which 

means that the number of unknowns to be determined in 

the surrogate modeling is reduced and, opposed to the 

curse of dimensionality, one can save significant 

computational cost to generate the training sample set.  

This study is the extension of the previous method for 

further cost reduction. In Ref. [1], the input parameter 

transformation and the surrogate modeling are 

conducted independently. By doing that, one can 

estimate the error due to input parameter transformation 

and the surrogate modeling, separately and theoretically 

one can eliminate the error due to input parameter 

transformation within the machine precision. However, 

in practice, the input parameter variations, which may 

be considered significant in view of the input parameter 

transformation, may not be influential on the actual 

response change. By properly filtering those 

components, we expect that more reduction would be 

achieved. The basic idea and the preliminary test results 

are presented.  

 

2. Multi-Surrogate Modeling 

 

We have observed that: 1) reactor physics 

calculations are mildly nonlinear problems, i.e. large 

portion of the response changes can be captured by the 

linear approximation; 2) as the response variation 

increases, the nonlinear effect also increases; 3) 

computational cost explodes due to nonlinear terms. 

These motivate that the multi-surrogate approach in 

which the response change is considered as a sum of the 

linear component and the nonlinear component and 

those are estimated separately. According to the first 

observation, the discrepancy of linear approximation, 

i.e. nonlinear component, would be small compared to 

total response change. If the surrogate is built only for 

the discrepancy, we can filter out insignificant 

components of input parameter variations more easily. 

Moreover, because those are directly related to 

nonlinear terms, opposed to curse of dimensionality, the 

computational cost could be saved super-linearly.  

The advantage of the multi-surrogate approach can be 

illustrated by an example. Consider that a response 

change is the sum of 90% linear component and 10% 

nonlinear component, i.e. higher order terms. Note that 

though there is 10% error in the estimation of the 

nonlinear component, the error in the total response 

estimation would be only 1%. This implies that the 

higher order terms can be reduced further depending on 

the nonlinearity and required level of accuracy. The 

linear component can be efficiently and accurately 

captured by the first order Taylor expansion based on 

adjoint sensitivity analysis [2]. Then, only the 

discrepancy between the original model and the first 

order estimation is fitted, i.e. the surrogate modeling 

with reduced input parameters. The proposed multi-

surrogate modeling is illustrated in Fig. 1.  
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Fig. 1. Schematics of Multi-Surrogate Construction 

 

3. Numerical Tests  
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The SCALE6.1 [3] is used as a simulation code 

(SAMS for first order sensitivity information calculation 

and NEWT as a transport solver). Fig. 2 depicts the 

model analyzed [4]. The fission cross sections of four 

nuclides (i.e. U-234, U-235, U-236 and U-238) in 44 

energy group in 9 fuel mixtures are perturbed by  30% 

from uniform distribution, i.e. the dimension of input 

parameters is 1584 . The responses are chosen to the 

mixture fluxes in the fuel mixture 1, i.e. the dimension 

of input parameters is 44 . 

 

 
Fig. 2. 7 7  BWR Benchmark Assembly Model 

 

As described in the previous section, the linear 

component is estimated by the adjoint sensitivity 

analysis. The discrepancies between the actual response 

changes and the adjoint based first order estimation are 

corrected by the second order polynomial regression 

analysis with reduced order modeling, i.e.: 
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where   is the vector of input parameter variations,  

,1 ,2, r

m m    are the coefficient vectors and 

1584 rQ  is the matrix of which columns are basis of 

the influential input parameter subspace with respect to 

response change. Two different number of basis vectors 

are tested; 30r   and 50r  . As training sets, the 1000 

and 3000 sample sets generated by Latin-Hypercube 

sampling (LHS) are used for 30r   and 50r  , 

respectively. To check the estimation accuracy 

according to the magnitude of the input parameter 

perturbation, the base perturbation is generated by 

 1% from uniform distribution and increases by 

multiplying integer values up to 30. 

To estimate the required number of basis vectors, the 

singular value spectrum of the pseudo-response 

sensitivity vectors are investigated. One can consider 

that the singular value as importance of the 

corresponding basis vector. Fig. 3 shows that 30 and 50 

basis vectors capture only 75% and 82% of the 

subspace spanned by input parameter variations. The 

surrogate model with those basis vectors showed very 

poor estimation accuracy. However, with multi-

surrogate modeling, the response change can be 

predicted accurately as shown in Fig. 4.  
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Fig. 3. Singular Value Spectrum of Pseudo Response 

Sensitivity Vectors 
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Fig. 4. Comparison of Estimation Accuracy 

 

4. Conclusion 

 

The multi-surrogate approach can be useful for quasi-

nonlinear problems for surrogate modeling. By utilizing 

adjoint sensitivity analysis for linear response change 

estimation, the required additional simulations would be 

increased linearly while the required simulation to 

capture the nonlinear effect can be reduced super-

linearly; thus, overall computational cost can be saved. 
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