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1. Introduction 
 

One of the urgent tasks in fusion tokamak 
development is the appropriate choice or development 
of plasma facing materials. The sustainable operation of 
fusion reactors would be difficult due to plasma facing 
component(PFC) from being damaged by high-
temperature and high-energy particles irradiation. 
Research about PFC located in the most demanding 
environment of the fusion reactor should be carried out 
continuously to make room for the appropriate choice 
and development. In this study, the characteristics of the 
damage of PFC have been analyzed by computer 
simulation using MCNP code. There are realistic 
limitations in experiments; impossible now in 
continuation of irradiation time and in providing 
enough high-energy particle fluxes. Even in the reactor 
experiment of neutrons only, high DPA cannot be tested; 
in case of HANARO, total irradiation time should be 
one year for 1 DPA [1].   

 
2. Methods of Analysis and Results 

 
Characteristics of candidates for PFC should have 

low neutron activation and excellent heat resistance. 
Choice of such materials is very limited. Tungsten(W), 
SiC, C composites, V alloys, etc. are examples. Detail 
design for the first wall is not known clearly and may 
not be fixed yet, so analysis was done for the simple 
geometry. 

A model structure is a plane of three material layers 
as shown in Fig.1. The quantity of 14.06 MeV neutrons 
is assumed ~3% of the quantity of 2.45MeV neutrons 
by KSTAR conditions [2]. Center temperature of 
plasma is hundreds of millions Celsius. But temperature 
of plasma boundary contact with the PFC is 
approximately 1,000℃. Thus first region temperature of 
first wall is assumed to be 1,000℃. He coolant used in 
the HCSB blanket has an inlet temperature of 300℃ 
and an outlet temperature up to 500℃ [3]. The second 
region temperature is assumed to be 500℃ and the 
third region 300℃ because the second region is a heat 
sink that has a good thermal conductivity.  
 
 
 
 
 
 

Fig.1. Structure Model of Evaluation Target 
 

2.1 DPA(Displacement Per Atom) Analysis 
 

DPA means how many displaced target atom from 
the original position due to collisions between particles 
and target atom. Theoretically, this is the best way to 
describe the degree of damage. But it is difficult to 
experimentally determine the value of DPA. 
ܣܲܦ																									  =  (1)          	ܧሻ݀ܧሻ߮ሺܧௗ௦ሺߪ
 

Where ߪௗ௦ is the displacement cross-section, ߮ is 
the neutron flux. Displacement cross-section ߪௗ௦  is 
calculated as follows 

ௗ௦ߪ																					  = .଼ଶா ௗߪ ௗܶ                (2) 
 

where ߪௗ is the damage cross-section, ௗܶ is the value 
that can be called “average damage energy”, ܧௗ is the 
displacement threshold energy [4]. ߪௗ and ௗܶ can be 
got by MCNP code. MT number of damage cross-
section is 444. This number is used in FM card in 
MCNPX. And heating number(MeV/collision) is used 
to get	 ௗܶ. 
 

 

 
Fig.2. Calculated DPA at different materials 

 
The DPA values are very low due to low neutron flux 

in KSTAR. Tungsten has the lowest value in these 
materials. After first region, the values of all cases are 
almost same because second region and third region are 
fixed materials. The value is affected by high-energy 
neutrons upper than ~100KeV.  
 
2.2 Neutron flux analysis 
 

High-Level-Waste in blanket is burned out more 
easily at high energy neutron( > ~1MeV). The blanket 
is located next to the first wall. So I have found which 
material transmits the larger fraction of high-energy   
neutron.   
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