
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2012

Worst-Case Execution Time Analysis of SCOPS Modules Based on Software Analysis Model

Jong Yong Keum
a*

, Yong Suk Suh
a
, Joon Ku Lee

a
, Gwi Sook Jang

a
, Yong Jin Seo

b
, Hyeon Soo Kim

b
, Je Yun Park

a

a
Research Reactor Design & Engineering Div. KAERI, 150-1 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353

b
Department of Computer Science and Engineering, Chungnam Nat’l Univ., 220 Gung-dong, Yuseong-gu, Daejon, Korea,

305-764
*
Corresponding author: jykeum@kaeri.re.kr

1. Introduction

To analyze schedulability, a worst-case execution time

(WCET) analysis that computes the upper bounds of the

execution times for modules is indispensably required.

Using WCET analysis, the longest path among various

paths is searched. This paper presents analysis procedure

of WCET and test and analysis results of WCET for the

SCOPS (SMART COre Protection System) source

modules.

2. Analysis Procedure of WCET

 The analysis procedure of WCET [1] follows six steps

(Fig. 1). Each step is explained in the subsequent clauses.

Finding relation between

C codes and Assembly

Instructions

AST construction for C

codes

Generation of extended C

code from AST

Execution of extended C

code in development

environment

Execution of extended C

code in real environment

Analysis of execution time

deviation

C instruction cycle

table

Abstract Syntax

Tree

Extended C code

of cycles of each

path

Measured

execution time per

each path

Analysis results

Fig. 1. Analysis procedure of worst case execution time

2.1 Finding relation between C codes and Assembly

Instructions

 C codes are transformed into assembly instructions

through a compiler. Assembly instructions have

operations and information to be used in an operation, and

they are executed by the CPU directly. Although assembly

instructions are different according to their CPU

architectures, they are usually executed in the sequence

shown in Fig. 2.

Using the assembly instructions corresponding to a C

statement, we can calculate the cycles required to execute

a C statement. Furthermore, we can compute the total

cycles required to execute C modules. We performed

works to classify a C statement into assembly instructions

and define their execution cycles.

Fig. 2. Operation processes of assembly instructions

2.2 Abstract Syntax Tree (AST) Construction

The purpose for constructing AST is for extracting

information to analyze a C source module. To predict the

WCET, nodes of AST include operand type, and related

information on an operator to analyze the C module. Most

of the execution time is affected by the operand types. For

example, in the case of + operator (ADD), it takes one

cycle to compute an add operator with both operands of

integer type. But it takes four cycles to compute an add

operator with both operands of a float type. Using the

operand information, we can determine the cycle counts of

operators.

Nodes of AST include abstract expressions for

operation cycles. For example, suppose an expression is

a>b and a, b are integers. A cycle string, such as “LOAD

+ LOAD + int_GT” is stored in a specific node field of

AST. A cycle string is used to store information to know

the cycle counts of any operation. LOAD means the time

required to load any variable into a register from memory.

And int_GT means the time required to compare integer a

and integer b loaded into registers.

2.3 Generation of Extended C Code from AST

Each node of AST includes a cycle string and type

information for an operation to predict WCET.

Additionally, because nodes include C source codes, each

node is traversed sequentially and node information is

printed. Finally, we can print an extended C module and

find WCET.

There are various execution paths in a C module. To

find execution paths in the module, probes should be

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2012

inserted in an appropriate position of AST. Using these

probes, we can know which paths are executed in a

module.

2.4 Execution of Extended C Code in Development

Environment

Extended C codes include codes to measure the

execution time and determine the execution paths. It is

possible to predict the execution time of a specific path of

extended C codes with test cases. We must execute a

specific function to measure WCET per function and

observe the results. In particular, to control the execution

paths, we must insert extended probes into the C codes,

observe an execution path, and prepare test cases to

execute different paths in a module.

 The test environment (Fig. 3) in a simulation mode was

constructed to measure WCET of extended C module. A

test driver is needed to call a specific module of SCOPS

codes. This test driver includes codes to prepare test data

and codes to call the related module.

Fig. 3. Test environment to measure WCET in a

simulator

In Fig. 3, when related modules are executed with a test

data, information to indicate whether a true path or a false

path of a predicate in the module passed and execution

cycle counts of the path are recorded in the log.

2.5 Execution of Extended C Code in a Real

Environment

In the 2.4 clause, WCET of the extended C modules in a

simulator was measured. But this WCET is only a

predicted value. The execution time of the C modules in a

real test environment is measured as in Fig.4. This

environment is similar to Fig. 3 except that the C modules

are executed on a real processor board, not in a simulator,

and the execution time is measured using an oscilloscope.

2.6 Analysis of Execution Time Deviation

WCET to be measured using a software analysis

model is the predicted value of the execution time. To

demonstrate the validity of this predicted value, we must

show its deviation from the real execution time. If such

validity is demonstrated, we will be able to use a software

analysis model to analyze the deterministic features and

response time of the software.

To find the deviation of the software analysis model

from real execution time, Equation 1 is used. In Equation

1, t(Software) means the predicted value of the software

analysis model and t(Board) means the real value from the

target processor board.

 (Equation 1)

Applying t(Software) and t(Board) to Equation 1, we

obtain 75.9% on average. Through the deviation analysis,

we showed t(Software) is the upper bound of t(Board).

Therefore, when a real program is executed on a target

processor board, the real execution time is lower than the

execution time from the software analysis model.

Fig. 4. Test environment to measure WCET on a real

processor board

3. Conclusions

The test cases in this paper are only for a unit test and

do not sufficiently reflects the system context. In other

words, test cases are those that meet the branch coverage.

Therefore, we cannot assure that these execution paths

searched using these test cases are real execution paths

searched in view of system context. To precisely measure

WCET, we need a set of test cases to reflect the real

system context. We will also find the execution paths of a

real system and methods considering pipelining, cache,

and so on.
REFERENCES

[1] Korea Atomic Energy Research Institute, “Final

Report on Real Time Analysis of SCOPS test software,”

October 2011

	분과별 논제 및 발표자

	PNO0: - 1182 -
	PNO1: - 1183 -

