Sensitivity Analysis of Core Damage Frequency for Advanced Power Reactor Plus

H. R. Moon^{a*}, S.H. Kang^a, Y.S. Park^a

KHNP, Central Research Institute, Yuseong-daero 1312-70, Yuseong-Gu, Daejeon, Korea, 305-343 *Corresponding author: moonn@khnp.co.kr

1. Introduction

The main design features of advanced power reactor plus(APR+) is shown in Figure 1. The electrical design characteristic of APR+ is that it is designed using N+2 concept. APR+ emergency power system has four EDGs and is designed with four-train that is electrically and mechanically completely independent.

Fig. 1. Design features of APR+

Another major design feature is passive auxiliary feedwater system (PAFS), completely substitute active auxiliary feedwater system [1]. This system can supply cooling water using natural forces such as gravity.

2. Probabilistic Safety Assessment

In case of full power internal events, core damage frequency (CDF)'s goal for the APR+ standard design is less than 1.0E-6/yr. Although probabilistic safety assessment (PSA) for APR+ is under evaluation, the result of PSA is expected to satisfy the goal of CDF.

Adopting of advanced safety features like four-train safety system and PAFS, the risk of APR+ is significantly reduced [2].

2.1 Results

The estimated core damage frequency induced by internal events during full power is under 1.0E-6/yr. Among the initial events, the total loss of components water (21.1%), small LOCA (20.4%), station black out (13.8%) and the loss of offsite power (8.6%) dominate

the core damage frequency. The total CDF of those four events accounts for approximately 63.9% of the total CDF. The relative contribution (percent of total) of the various internal events to the total CDF is illustrated in Fig. 2

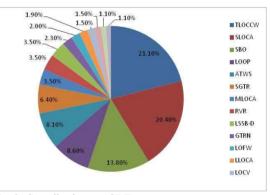


Fig. 2. Contributions to CDF

2.2 Sensitivity Analysis

In Table I, the core damage frequency (CDF) is compared to APR+ and reference plant. In case of adopting four EDG (Case 1), CDF of APR+ is decreased to 16% than reference plant. In case of considering both Case 1 and PAFS (Case 2), CDF of APR+ is decreased to 26%.

Case	APR+ design feature	Improving rate of CDF for APR+
1	4 EDG	-16%
2	Case 1 + PAFS	-26%

Table I: Comparison of core damage frequency to APR+ and reference plant

3. Conclusions

Consequently, the CDF of APR+ was evaluated to be less than 1.0E-6/yr. The CDF sensitivity analysis was evaluated to APR+ and reference plant. The reliability of emergency power supply for APR+ was improved, because of adopting four EDGs instead of two.

REFERENCES

[1] KHNP Central Research Institute, Evaluation Report on the Safety Analysis for the APR+ Development, 2011.

[2] H. R. Moon, B. L. Park, Y. S. Park, "Sensitivity Analysis for Using Gas Turbine Generator to Provide Alternate Alternating Current in APR+", Trans. of the KSME(A), Vol. 36, No. 1, pp. 101-102, 2012.

[3] KHNP Central Research Institute, APR+ Probabilistic Safety Assessment Technical Report, Vol. I, 2011.