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1. Introduction 

 
In order to effectively account for the transport 

effects in core calculations, the SP3 equations are 
adopted in some of the existing nodal diffusion codes 
such as PARCS[1] and DYN3D[2]. The advantage of 
using the SP3 equations comes from the similarity 
between the SP3 equations and the diffusion or P1 
equation that make it possible to use the existing code’s 
architecture and solution methods that were developed 
for the nodal diffusion equation. The only difference is 
that there are one more balance equation and one 
additional unknown, the second angular moment. For 
the solution of the SP3 equations by the nodal method, 
the nodal expansion method was first developed [1,2] 
and the source expansion nodal method(SENM)[3] was 
introduced as an accurate kernel to capture correctly the 
drastic variation of the second angular moment near  
material interfaces. The exponential part of the source 
expansion nodal solution turned out to be very effective 
in describing the strong gradient in the second angular 
flux near the surface and this capability of SENM 
provides better accuracy than the corresponding NEM 
solution. 

On the other hand, a nodal solution kernel can be 
formulated locally employing either a one-node or two- 
node formulation. The one-node formulation requires 
incoming current conditions[1] while the two-node 
formulation requires node average fluxes[3]. In 
principle, these boundary conditions can be provided by 
the global coarse mesh finite difference (CMFD) 
solution that includes both zero-th and second angular 
moment fluxes. Inclusion of the second angular 
moments in the CMFD system, however, can lead to 
potential instability because of the large gradient of the 
second angular moments near each interface. This work 
is to develop a way not to use the second angular 
moment in the CMFD equation by keeping the ordinary 
P1 CMFD formulation.  

 
2. Solution Method 

 
The transverse integrated 1-D SP3 equation can be 

obtained as follows with the inclusion of transverse-
leakages terms on the right hand side as: 
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By assuming a quadratic spatial variation of the 
transverse leakage source, Eq. (1) can be solved for the 
entire 1-D domain consisting of several nodes with the 
boundary conditions specified at the two boundaries. 
The diagonalization process by similarity transform is 
performed first, however, to express the solution in 
terms of the first and second harmonic modal solutions 
given below: 
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(2) 
with ξ being the normalized intra nodal spatial variable. 

The coefficients of the homogeneous solution of each 
node are coupled to those of neighboring nodes due to 
the continuity condition of flux and current at the 
interface. The diagonalization process and the 
derivation of a coupled linear system which takes a 
form of a block bidiaongal matrix as shown below are 
detailed in a previous work[4].  
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This is called a whole 1-D SENM formulation and 
the linear system of Eq. (2) is formed and solved for 
each line of nodes. In a two-dimensional problem, these 
lines of nodes are formed in the x- and y-directions, 
respectively. The surface current information 
determined at the interfaces can be used to determine 
the current correction factor in the CMFD balance 
equation. The solution of the CMFD problem is then be 
used to construct the node average fission source and 
transverse leakage needed in Eq. (1). The intra-nodal 
fission source shape is updated during the solution of 
Eq. (1), but the node average value is kept invariant in 
order to improve stability.  

In the P1 CMFD formulation, the second angular 
moments are excluded and thus there is no way to 
determine the transverse leakage information for the 
second angular moment. This problem can be resolved 
in two ways. One is to completely neglect 2L in Eq. (1) 
and the other is to use the previous step’s solution of Eq. 
(1) with 2L included. In this case, the whole 1-D 
solution for 2φ determined for the perpendicular 
direction is used. The following flow chart describes the 
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whole solution sequence in the case of a two-
dimensional problem. 

 

 
Fig. 1. Schematic of the Solution Sequence for 2-D 

 
3. Performance Examination 

 
The verification of the SENM SP3 kernel based P1 

CMFD formulation was done for the Takeda[5] fast 
reactor problem and the KAIST4G[6] benchmark 
problem which are both 2-dimensional. The two 
methods of treating  2L  were examined. The 2 0L =
method is denoted by #1 and the other by #2. The 
reference transport solution was obtained by the 
nTRACER MOC code and the reference SP3 solution 
was obtained with a fine mesh finite difference method 
solution for the SP3 equations. Different mesh sizes 
were tried for the nodal solution. In order to examine 
the accuracy of the SP3 solution relative to the diffusion 
(P1) solution, the k-effectives of the P1 and SP3 
solutions were also compared.  

As shown in Tables I and IV, the SP3 k-effective 
values are found to be much closer than P1 to the 
reference nTRACER values particularly for the Takeda 
problem involving large leakage. Tables II, III and V 
show that the SP3 nodal solution becomes more 
accurate as the node size gets smaller and also 2L  is 
included. 

 
Table I. k-eff’s for Takeda Problem #2 with Various Solvers 
CR nTRACER P1 FDM SP3 FDM 
in 1.03109 1.02595(-514) 1.03026(-83) 

OUT 1.06367 1.06063(-304) 1.06359(-8) 
* differences given in parenthesis in pcm 
 

Table II. SP3 SENM vs. Fine Mesh SP3 for Takeda #2 
Case I : Control Rod In 

Reference* Mesh 
size 
[cm] 

Error [pcm] Time 
[sec] k-eff Time 

[sec] # 1 #2 

1.03026 931 5 20 7 10.8 
2.5 9 0 38.0 

Case II : Control Rod Out 
Reference* Mesh 

size 
[cm] 

Error [pcm] Time 
[sec] k-eff Time 

[sec] # 1 #2 

1.0635
9 1244 5 7 0 9.6 

2.5 4 -2 42.7 
* Reference SP3 FDM with the mesh size of 0.27 cm 

 
Table III. Max relative power error (%) in the fuel region for 

the Takeda Problem 
CR 5cm 2.5cm 
In 0.29 0.11 

Out 0.13 -0.05 
 

Table IV. k-eff Comparison for the KAIST4G Problem 
nTRACER P1 FDM SP3 FDM 

1.06757 1.06644(-113) 1.06783(26) 
 

Table V. SP3 SENM vs. Fine Mesh SP3 for KAIST4G 
Reference* Mesh 

size 
[cm] 

Error [pcm] Time 
[sec] k-eff Time 

[sec] # 1 #2 

1.06783 2678 
21 36 17 0.34 

10.5 20 10 0.81 
5.25 5 1 2.55 

* SP3 FDM, 0.16cm 
 
It is also noted that the computing time for the SP3 
nodal solutions is trivial compared to the fine mesh 
FDM solutions as expected. 
 

4. Conclusions 
The solution of the SP3 equation was obtained 

successfully with the whole 1-D SP3 SENM kernel 
embedded in the P1 CMFD formulation. The SP3 
solution turned out to be much more accurate for the 
fast reactor problems having considerable leakage. With 
the proposed SP3 nodal method, the computing time 
could be reduced by more than a factor 100 compared 
to the FDM cases. 
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