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1. Introduction 
 

Probabilistic Safety assessment (PSA) is a 
mathematical tool to evaluate numerical estimates of 
risk for nuclear power plants (NPPs). But PSA has the 
problems about quality and reliability since the 
quantification of uncertainties from thermal hydraulic 
(TH) analysis has not been included in the 
quantification of overall uncertainties in PSA. From the 
former research, it is proved that the quantification of 
uncertainties from best-estimate LBLOCA analysis can 
improve the PSA quality by modifying the core damage 
frequency (CDF) from the existing PSA report. 

Basing on the similar concept, this study considers 
the quantification of SBLOCA analysis results. In this 
study, however, operator error parameters are also 
included in addition to the phenomenon parameters 
which are considered in LBLOCA analysis.  

 
2. Analysis Method 

 
In this study, MARS3.0 code is used to analyze 

SBLOCA in OPR1000, which is best-estimate code and 
has been developed at Korea Atomic Energy Research 
Institute (KAERI) by consolidating and restructuring 
the RELAP5/MOD3.2 code and COBRA-TF code. 
Optimized Power Reactor 1000 (OPR1000), which is 
the standard nuclear power plant in Korea, is selected as 
the objective plant. Figure 1 shows the nodalization of 
OPR1000 for MARS code analysis. 

 

 
Fig. 1. Nodalization used for MARS code calculation 
 

2.1 Accident Sequence 
 
Among the results of SBLOCA from the existed PSA 

report, two sequences are picked up as the accident 
sequences. One sequence has the highest CDF from the 
existed PSA report. During the accident heads, steam 
removal via atmosphere dump valves fail but core is 

stably cooled down. Although it does not have the high 
CDF of all SBLOCA sequences, the other sequence 
ends in the core melt since core decay heat removal by 
bleed RCS operation fails.  
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Fig. 2. Event tree of SBLOCA 

 
2.2 Effective Parameters 
 

A set of effective parameters should be chosen for 
the evaluation of uncertainty. The set of parameters can 
affect the result of thermal hydraulic analysis by the 
uncertainty range of each. There are two types of 
parameters : phenomena identification and ranking 
table (PIRT) and operation parameters. Phenomena 
parameters come from the research for LBLOCA 
analysis which is already performed[1] and operation 
parameters are chosen considering the system of the 
plant and necessary operation actions to cope with the 
accident. Table 1 and table 2 show PIRT and operation 
parameters, respectively. 

  
2.3 Random Sampling 

 
The parameters in table 1 and table 2 have each 

uncertainty range. Each certain value randomly picked 
from each range is entered into MARS code input. 
Therefore one input is got considering the multiple 
effect of uncertainty of all parameters. In this study, 
200 input decks by random sampling are used to 
evaluate the uncertainty.   

 
3. Conclusions 

 
The study to evaluate the uncertainty effect is 

ongoing. This research is expecting that an accident 
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Table 1: PIRT 

Parameter Distribution Uncertainty Range Reference Value Description 

1 Gap Conductance Uniform 0.05 mm – 0.360 mm 0.092 mm 3σ 

2 Power Peaking Factor Uniform 1.50535 - 1.71465 1.61 2σ(±5.6%) 

3 Operating Plant Power Normal 98% - 102% 2815 

4 Decay Heat Normal 93.4% - 106.6 % ANS79-1 2σ(±6.6%) 

5 Axial Power Distribution Top/bottom Assumption 8th node ±3 nodes 

6 Fuel Thermal Conductivity Normal 90% - 110 % table Function of temperature 

7 Cladding Thermal Conductivity Normal 88% - 112 % table Function of temperature 

8 Pellet Heat Capacity Normal 90% - 110 % table Function of temperature 

9 Discharge Loss Coefficient - - - Not determined yet 

10 Heat Transfer Coefficient - - - Not determined yet 

 

Table 2: Operation Parameters 

Parameter Distribution Range Nominal Value 

1 RCP Trip Uniform 
10 – 15 K trip signal from subcooled margin 12.5 K 

1 – 5 min trip 3 min after trip signal 

2 Feedwater Injection Uniform 0.2 – 0.27 SG water level down : 23.5 %  

3 
HPSI Injection Uniform 15 – 45  30 s after injection signal 

HPSI Flowrate Uniform -20 - +20 % default value from input deck 

4 Break Area Uniform 0.0008 – 0.02 ft2 0.0104 ft2 

 
 
scenario which was considered as cooling failure 
scenario can have the probability to end in safe state, 
not core melt. On the contrary to this, an accident 
scenario which was considered finally safe can head 
partially toward the core meltdown. Even if it is 
confirmed that the probability is zero, this kind of 
approach to evaluate the effect of uncertainty in thermal 
hydraulic analysis for PSA will be significant. 
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