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1. Introduction 

This summary describes a new framework for 

perturbation theory intended to improve its 

performance, in terms of the associated computational 

cost and the complexity of implementation, for routine 

reactor calculations in support of design, analysis, and 

regulation. Since its first introduction in reactor analysis 

by Winger [1], perturbation theory has assumed an aura 

of sophistication with regard to its implementation and 

its capabilities. Only few reactor physicists, typically 

mathematically proficient, have contributed to its 

development, with the general body of the nuclear 

engineering community remaining unaware of its 

current status, capabilities, and challenges. Given its 

perceived sophistication and the small body of 

community users, the application of perturbation theory 

has been limited to investigatory analyses only. It is safe 

to say that the nuclear community is split into two 

groups, a small one which understands the theory and, 

and a much bigger group with the perceived notion that 

perturbation theory is nothing but a fancy mathematical 

approach that has very little use in practice.  

Over the past three years, research has demonstrated 

two goals [2]. First, reduce the computational cost of 

perturbation theory in order to enable its use for routine 

reactor calculations. Second, expose some of the myth 

about perturbation theory and present it in a form that is 

simple and relatable in order to stimulate the interest of 

nuclear practitioners, especially those who are currently 

working on the development of next generation reactor 

design and analysis tools. 

The operator decomposition approach has its roots in 

linear algebra and can be easily understood by code 

developers, especially those involved in the design of 

iterative numerical solution strategies.  

  

2. Perturbation Theory Background  

Perturbation theory addresses the following problem. 

Consider a model with n input parameters which are 

represented by an n component vector, np . The 

model calculates a solution, referred to as the state of 

the engineering system. In neutronics, the flux 

represents the state; in thermal analysis, the temperature 

distribution plays the role of the state. Mathematically, 

this is described as follows: 

 , 0p                                (1) 

This represents a system of algebraic equations, solved 

numerically for the state represented by a vector of k 

components, k  . The state rarely represents the 

goal of the simulation. However, one calculates the 

engineering quantities of interest (QoI) as functions of 

the state and parameters, described in general by:  

 ,p                                (2) 

where m  is a vector representing the m QoIs. The 

multiple execution of the model is a typical requirement 

for any real-world engineering analysis. For example, 

consider the neutronics model describing the radiation 

transport in a given fuel lattice. One needs to execute 

this model in the order of 10
4
 times to account for 

different lattice designs, fuel composition change due to 

depletion, spectrum changes due to fuel temperature and 

thermal-hydraulics conditions. Another application is 

the propagation of uncertainties, where one tries to 

quantify the impact of parameters uncertainties on the 

QoIs. Mathematically, perturbation theory describes this 

situation as follows: for a given input parameter 

perturbation, p , find the corresponding variation in 

the QoI,  . This formulation implies that one does 

not need to know the corresponding state variation, only 

the QoI variation is sought. There are two general ways 

to solve this problem. The first one is denoted by the 

forward approach. As the name implies, it re-executes 

the model with the parameter perturbation and 

calculates the state variation, then the variation in QoI. 

In the adjoint approach however, one can show that by 

calculating another function called the adjoint state, one 

can estimate directly the QoI variation without having to 

calculate the state variation. If this assertion is valid in 

general, one can treat all required executions of the 

model for design calculations as simple perturbations 

from some reference state, and save the huge 

computational cost that would be otherwise required by 

the forward approach. Unfortunately, this assertion is 

not generally true. It is only true first-order variations 

implying that nonlinear variations are ignored, i.e. 

assumed negligible. This limits the use of perturbation 

theory to problems where only small variations are of 

interest, such as in the case of uncertainty analysis for 

neutronics model. Our objective is to design a 

framework that enables perturbation theory to calculate 

both the linear and nonlinear variations in the QoI with 

inexpensive computational cost. 

Mathematically, assume Eq. 1 and 2 take the form:
1
 

   p p Θ    and   T                      (3) 

The symbol 
k k

Θ is a matrix operator 

representing the numerically descritized continuous 

                                                 
1
 For simplicity, assume a source driven model, the operator acts 

linearly on the state, and no source perturbations. 
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operator in Eq. 1 with the appropriate boundary 

conditions. A single QoI is described by an inner 

product of some vector   with the state. Solving for 

the state, one obtains: 
1 Θ     and    1T   Θ                (4) 

Consider a perturbation in the parameters: 

  1 1T   
    Θ Θ Θ             (5) 

One can expand the  
1

Θ Θ  term yielding: 

 
2

1 1 1 ....T                  Θ I ΘΘ ΘΘ Θ  (6) 

To estimate the first order variations of the QoI, ignore 

all terms that are higher than one to obtain: 
1 1 1T       Θ Θ Θ  

In practice, one needs to calculate this variation for 

many parameters. To accomplish this, note that this 

equation could be interpreted in two different ways, 

mathematically described as follows: 

  1 1 1T       Θ Θ Θ  

or                   1 1
T

T       Θ Θ Θ  

The first expression implies that for a given 

parameter variation, one needs to calculate what is 

between the round brackets first, then apply the inverse 

of the operator, implying a forward model execution, 

then take the inner product with the QoI’s vector. This 

forward approach requires n forward model executions 

for a model with n input parameters.  

The second expression however requires that one to 

calculate the inverse of the operator transpose times the 

QoI’s vector. This is equivalent to executing the adjoint 

model once. The resulting vector is denoted the adjoint 

state. The QoI variation reduces to a simple inner 

product between the adjoint state and the variations of 

the terms in the round bracket. In doing so, one executes 

the forward and adjoint models one time each at the 

reference conditions. 

Let’s consider second order variations, Eq. 6 gives: 

  2 1
T

T T T        
 

Θ Θ Θ ΘΘ  

First, evaluate T
Θ  which is a single adjoint model 

execution at reference conditions. For a given 

perturbation, form the matrix Θ  and calculate its 

product with the reference adjoint. Evaluate the matrix-

inverse-transpose product with the resulting vector 

(what is indie the curly brackets). This is equivalent to 

an adjoint model execution per perturbation. The result 

is then multiplied by 1ΘΘ  which requires a single 

forward model execution at reference conditions. In this 

approach, a total of n+1 adjoints and 1 forward model 

executions are required to get the second order 

variations. The cost for higher order variations using the 

adjoint approach increases as 1sn  , where s is the order 

of variation.  

 

 

3. Proposed Framework 

The proposed research is based on few observations. 

First, the state while living in a k dimensional space, the 

state variations from all possible parameters variations 

have been reported to live in a subspace of much 

smaller dimension r k [2-3,5]. Second, the rank r is 

much smaller than the number of responses and input 

parameters often associated with reactor models. One 

could rigorously calculate the error 
user  resulting from 

reducing the state to live in a subspace [3]. 

Mathematically, this could be described as follows: 

 ( )r T

r r user      I Q Q  

The 
user  can be made as small as the precision of the 

forward model calculations. This expression implies 

that the reduced flux may be expressed as linear 

combination of the r columns of the matrix 
rQ . This 

matrix is calculated using a statistical snapshots 

approach, which records all possible state variations.  

Now, recalling a simple relationship from linear 

algebra, the so-called Sherman Morrison inversion [4]: 

 
1 1

1
1
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The 1
Θ operator denotes the forward model with no 

perturbation. Consider that the rank-one update matrix 
Tuv  represents a perturbation due to a given parameter 

perturbation. This relationship assures that the state will 

be modified from the reference value by a vector that is 

pointing in the direction 1u
Θ . This observation 

represents the core of the proposed framework. Since 

the flux varies only along a subspace of rank r, this 

implies all the operator perturbations in the form of 

matrices must have a combined range of dimension r 

since the matrix Θ  is nonsingular. This simple 

observation could be rigorously employed to recast the 

Eq. 6 in a much simpler format. Moreover, one can 

show that all higher order variations can be calculated, 

i.e. evaluating the entire infinite series expansion, rather 

than one term at a time, with only r adjoint model 

evaluations and r forward model executions. Numerical 

results of this proposed framework applied to 

representative nuclear reactor models will be presented 

at the meeting. 
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