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1. Introduction 

 
Radiation portal monitors (RPM) have been deployed 

at nation’s borders to screen individuals, vehicles or 

cargos at borders or security facilities to thwart 

smuggling of illicit radiological source and materials for 

nuclear weapons. The utilization of RPMs is not limited 

to detecting radioactive sources. Depending on which 

technology integrated with RPMs, diverse functions can 

be implemented RPMs. The various applications have 

been developed in the direction of convenient to 

operators such as radioisotope identification[1-4] and 

localization and tracking of radioactive sources[5-7]. 

This paper is focused on a technique to localize 

radioactive source using a deep learning algorithm. 

 

2. Methods and Results 

 

2.1 Convolutional Neural Network 

 

Convolutional neural network (CNN) is one of the deep 

learning algorithm, and known that CNN has powerful 

performance to analyze 2D visual data. It generally 

utilized for image and natural language processing 

Similar with general neural networks, CNN consists of 

an input, output layer and multiple hidden layers. 

Differently from typical neural network system, CNN 

has convolution layer, pooling layer and fully connected 

layers. Fig. 1 shows a schematic of conventional 

convolutional neural network system. 

 

 

Fig. 1 A schematic of a convolutional neural network 

 

2.2 Radioactive Source Localizing RPM 

 

To estimate the position of radioactive source, a set of 

NaI(TI) scintillation detector which has a volume of 

4416 in3 are utilized. Totally, 4 detectors are installed 

at the RPM frame. A region of interest (ROI) is set 

equivalent to the cross sectional size of containers, which 

satisfies ISO standard. Positions of detectors are 

determined as tri-sectional points of ROI. After then, we 

defines 25 position areas. The size of area is concerning 

the number of training samples. The number of the areas 

can be enlarged if the number of samples are enough. 

Following figure shows a schematic of source localizing 

RPM system with detailed dimensions. 

 

Fig. 2 A schematic of source localizing RPM system 

Using the measured quantities from these detector, a 

machine that localizes radioactive source will be trained 

by convolutional neural network.  

 

2.3 Training & Test 

 

Training and test data have been generated by 

MCNP6[9] simulations. Co-60 is utilized as source. 

Training samples are achieved by simulations with 

regularly distributed source data for all sections. Totally, 

2025 samples (81 samples per section) are utilized as 

training data. For test samples, 1250 simulation results 

(50 data per section) with randomly distributed source 

data are utilized for all sections. To confirm the 

localization performance correctly, test samples are 

generated as follows. Firstly, generate a random source 

distribution for a grid. Secondly, make source 

distributions for all section by matching generated data 

on each section.  

 

3. Simulation result 
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To confirm the performance of radioactive source 

localizing RPM, a convolutional neural network was 

implemented in the Python with the TensorFlow 

library[10]. As mentioned above, 81 samples per 

sections were utilized for training, and 50 data per 

sections were used for test. Fig. 3 shows test results in 

forms of confusion matrix. 

 

 

Fig. 3 Simulation result 

  

4. Conclusions 

 

By simulation study, the possibility to implement a 

deep-learning based radioactive source localizing RPM 

has been verified. Using a convolutional neural network, 

we confirms that it is possible to achieved accuracy over 

than 88 % in ideal with only 81 samples per section. Now 

we fabricated the RPM system. After the fabrication, we 

will confirm the performance of the RPM with real 

experimental data.  
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