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1. Introduction 

 
In the event of a severe accident in nuclear power 

plants (NPPs), if the reactor cannot be cooled and the 

heat is not removed, the reactor core can be melted. A 

metal such as zirconium used as a fuel covering material 

is oxidized with high temperature steam to generate a 

large amount of hydrogen. The generated hydrogen is 

released into the containment building and if the 

hydrogen concentration is more than 4% of the volume 

of the air inside the containment building, a hydrogen 

explosion may occur, which threatens the integrity of 

the containment. The hydrogen is very explosive, and 

when an explosion occurs, it damages multiple defense 

walls and a large amount of radioactive material is 

released outside the containment. Therefore, it is 

important to predict the concentration of hydrogen 

generated in the melted core in severe accidents.  

  Since it is limited to obtain the accident data of 

nuclear power plants, Modular Accident Analysis 

Program4 (MAAP4) code [1] for optimized power 

reactor 1000 (OPR1000) was used. The initial 

conditions of MAAP simulations were simulated 

according to whether or not the Passive Autocatalytic 

Recombiner (PAR) was operated. In addition, the data 

obtained from the MAAP were analyzed against the 

hydrogen threat by comparing with the Severe Accident 

Management Guideline (SAMG) calculation table for 

OPR1000. 

 In this study, the hydrogen concentration under 

severe accidents caused by Loss of Coolant Accidents 

(LOCAs) was predicted by using only limited 

measurement signals using Deep Neural Network 

(DNN), one of the artificial intelligence methods. [2] 

If the reactor operators can use the DNN model to 

predict quite accurate hydrogen concentration within 

containment in case of severe accidents, it will help 

them prevent the hydrogen explosion. 

 

2. Deep Neural Network 

 

Deep learning is a methodology based on the 

Artificial Neural Network (ANN) algorithm that mimics 

the overlap of synapses in the human brain structure. 

Nowadays many researchers are considerably interested 

in the deep learning algorithm which provides excellent 

performance with large data sets. Fig. 1 is a deep neural 

network (DNN), which models complex nonlinear 

relationships using multiple hidden layers of units 

between the input and output layers. [3]  

 

 
 

Fig. 1. Deep Neural Network (DNN) model  

 

In the learning process of the DNN model, the node 

output values of the hidden layer calculated through the 

activation function reach the output layer and the 

predicted value is calculated. The weight values are 

optimized using an error backpropagation method. 

Equations (1) and (2), respectively, present a cost 

function and updated weight values. This learning is 

repeated until the global minima, the lowest point in the 

cost function, is reached, as shown in Fig. 2 [2].  

 

 
 

Fig. 2. Gradient Descent 
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The DNN model, which has an excessively deep 

structure, can experience vanishing gradient 

phenomenon with a backpropagation algorithm and may 

be vulnerable to overfitting problems.  [4] 

First, the overfitting problem can be resolved through 

cross validation using the data structure shown in Fig. 3. 

Data applied to the DNN is divided into the training 

data sets and validation data sets related to model 

development, and test data sets independent of learning. 

[5] 

 

 
 

Fig. 3. Cross Validation 

 

After the model is trained for each epoch, the 

validation data is used to measure the error of the model 

and the error of the validation data is minimized when 

the model is learned optimally. The DNN learning in 

this study is repeated until the cost(W) converges to the 

global minima or until the maximum number of epochs 

is reached. 

Second, a solution to the vanishing gradient is the use 

of the bipolar sigmoid function as the activation 

function. The problem of vanishing gradient is, that if 

the activation function is sigmoid as shown in Fig. 4, the 

graph for the output value becomes flat after a lot of 

learning and the gradient approaches zero. As a result, 

the error is hardly transmitted to the hidden layer in 

front, resulting in a phenomenon that the hidden layer 

weights are not properly learned.  

Therefore we use the bipolar sigmoid function as 

shown in Fig. 5, which is less sensitive to vanishing 

gradient than the sigmoid function. In spite of the well-

known ReLU function, which is known for its excellent 

performance in many studies, the bipolar sigmoid has 

shown that optimal performance is obtained under the 

same data conditions applied to the proposed model.  

  

 

 
 

Fig. 4. Sigmoid and its Derivative Functions  

 

 
 

Fig. 5. Bipolar Sigmoid and its Derivative Functions  

 

3. Hydrogen Concentration Threat Determination 

 

The relationship between containment building 

pressure and hydrogen concentration for the parameter 

input values used for MAAP4 is compared with the 

Severe Accident Management Guideline (SAMG) 

calculation table. Fig. 6 is quoted from the OPR1000 

nuclear power plant SAMG calculation table-02.  

Figs. 7-10 show the predicted hydrogen concentration 

using the DNN method. In case of PAR OFF, at each 

break size, the hydrogen concentration is estimated to 

be about 1% higher than when PAR is activated. 

 

 
Fig. 6. Possibility of Hydrogen Combustion (No Vent, No 

CCI, wet hydrogen measurement) 
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Fig. 7. Hydrogen Concentration for Containment Building 

Pressure (In case of PAR OFF, small cold-leg LOCA) 

 

 
Fig. 8. Hydrogen Concentration for Containment Building 

Pressure (In case of PAR ON, small cold-leg LOCA) 

 

 
Fig. 9. Hydrogen Concentration for Containment Building 

Pressure (In case of PAR OFF, large cold-leg LOCA) 

 

 
Fig. 10. Hydrogen Concentration for Containment Building 

Pressure (In case of PAR ON, large cold-leg LOCA) 

 

4. Application to Predicting the Hydrogen 

Concentration 

 

The data simulating LOCAs situations at cold-leg 

location is obtained using MAAP, which can simulate 

the overall system response to all types of accidents, 

such as LOCA at nuclear power plant. And the 

simulation data is applied to the DNN method to check 

the hydrogen concentration prediction performance. 

Only limited signals of predicted LOCA break size and 

hydrogen is used as input for hydrogen concentration 

prediction 

The performance of the hydrogen concentration 

prediction using the DNN model is verified by RMSE. 

The RMSE shows considerably low level for cold-leg 

LOCA location and break sizes (refer to Table I). It 

proves that the DNN model has a good performance. 

 
Table I. Prediction performance of the DNN model at cold-

leg  

PAR Break size 

RMS error (%) 

Training 

data  
Test data 

OFF 
Small 0.19 0.25 

Large 0.06 0.10 

ON 
Small 0.14 0.23 

Large 0.12 0.16 

 

Additionally, the result of this study can be compared 

with previous studies on the hydrogen concentration 

prediction using the models based on Fuzzy Neural 

Network (FNN) [6] and Cascaded Fuzzy Neural 

Network (CFNN) [7]. 

 

5. Conclusions 

 

It is important to predict the hydrogen concentration 

at severe accidents. It is essential to prevent threats due 

to hydrogen combustion and explosion before the 

hydrogen concentration in the containment exceeds 4%. 
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In order to reduce the possibility of hydrogen explosion, 

we have developed and tested a method for predicting 

the hydrogen concentration using the DNN model. The 

input data applied to the DNN model used only limited 

signals, which are the variables for the elapsed time 

after the reactor shutdown, the predicted LOCA break 

size, and the containment pressure. 

In this study, the DNN model has a low RMS error at 

all break locations and can accurately predict hydrogen 

concentration in containment and can provide operators 

with a trend of hydrogen concentration change in the 

containment after a LOCA. The proposed DNN model 

will be helpful for operators to maintain the integrity of 

NPPs due to hydrogen threat. 
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