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1. Introduction 

 

One of the recent research trends observable from 

many different domains or industries is the use of 

diverse deep learning techniques [1-7]. As a branch of 

machine learning, the deep learning techniques are not 

novel because their start can be back to 1940s [8]. 

However, since 2006, the deep learning techniques have 

become very popular because of several reasons, such 

as increasing computing power, increasing data size, 

and advancing deep learning research [9]. Of them, the 

breakthrough of deep learning techniques is remarkable, 

which results in the development of amazing variants 

including auto-encoders, deep belief networks, deep 

Boltzmann machine, convolutional neural networks, and 

recurrent neural networks [8-10]. For example, in terms 

of a machine health monitoring system (MHMS) 

development, which is one of the major application 

domains considered in the machine learning, Zhao et al. 

emphasized that the role of deep learning techniques is 

to replace a part of the MHMS instead of switching its 

whole part (Fig. 1). 

For example, in order to implement a MHMS, 

principal component analysis (PCA) techniques and 

support vector machines (SVMs) belonging the category 

of machine learning techniques have been traditionally 

used for many decades, which extensively require the 

manual intervention of developers, such as manual 

feature extractions, manual transformations, and model 

trainings. In contrast, an MHMS developed by the 

combination of deep learning techniques provides a 

seamless process that does not demand the manual 

interventions. This implies that the applicability (or 

application domain) of deep learning techniques should 

be searched from the standpoint of ‘enhancing existing 

techniques’ instead of ‘replacing existing techniques.’ In 

this regard, this study proposes the use of a digital twin 

that could be helpful for reducing uncertainties through 

resolving one of fundamental issues about the 

estimation of probabilistic safety assessment (PSA) 

results. 

 

2. Underlying limitations of PSA technique 

A PSA technique has been used for several decades to 

visualize the risk level of commercial nuclear power 

plants (NPPs). According to the statement of U.S. 

Nuclear Regulatory Commission (NRC), PSA can be 

referred to as: “The method or approach (1) provides a 

quantitative assessment of the identified risk in terms of 

scenarios that result in undesired consequences (e.g., 

core damage or a large early release) and their 

frequencies, and (2) is comprised of specific technical 

elements in performing the quantification [11].” 

According to this statement, the critical part of the PSA 

technique is to identify, as realistic as possible, 

plausible accident scenarios with associated frequencies 

that can cause undesired consequences (e.g., core 

damage or large early release frequency).  

For example, let us assume that there is an arbitrary 

system that consists of three key components (A, B, and 

C) with two possible states (Success and Failure). This 

means that the total number of observable scenarios 

from the system is eight. Of them, if an accident 

happens when two or more components are failed, the 

number of accident scenarios that are related the 

system’s risk become four. Accordingly, in terms of 

 
Figure 1. Role of deep learning techniques, adopted from Ref. [9] 
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quantifying the system’s risk, one of the promising 

approaches is to sum up failure frequencies calculated 

from all accident scenarios [12].  

The problem is that, however, the number of accident 

scenarios will drastically increase for a complicated 

system that comprises of a lot of components, such as 

petro-chemical plants and NPPs. This means that we 

need to put huge amount of resources on the analysis of 

a thermal-hydraulic (TH) code that tells the 

consequence of each accident scenario. More serious 

problem is that the current PSA technique does not 

consider the dynamics of different component failure 

timings, which resulted from interactions among diverse 

process variables (pressure, temperature, coolant flow, 

etc.), automated actions (automatic start of a pump 

when a specific set-point exceeded), and human actions 

(turn on a pump, close a valve, start a heater, etc.). As a 

result, in reality, the number of accident scenarios to be 

assessed exceeds controllable range along with the 

evolution of process variables, automated actions, and 

human actions [13, 14]. For this reason, various 

assumptions are incorporated into PSA techniques, 

which are effective to reduce the number of accident 

scenarios into a manageable range. Consequently, it is 

evident that one of the primary sources related to the 

epistemic uncertainty of PSA results is due to the 

reduction of accident scenarios (Fig. 2). 
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Figure 2. Uncertainty source of PSA results  

 

3. Development of a digital twin based on deep 

learning techniques 

As explained at the end of the previous section, the 

more the reduction of accident sequences increases the 

more the uncertainty of PSA results increases. In this 

regard, a digital twin developed by the combination of 

diverse deep learning techniques could be the solution 

of this problem. According to GE, the digital twin is “an 

organized collection of physics-based methods and 

advanced analytics that is used to model the present 

state of every asset in a Digital Power Plant. […] 

Included in the Digital Twin models are all necessary 

aspects of the physical asset or larger system including 

thermal, mechanical, electrical, chemical, fluid dynamic, 

material, lifting, economic and statistical. These models 

also accurately represent the plant or fleet under a large 

number of variations related to operation [15].” That is, 

the most important benefit of the digital twin is the 

provision of a digital replica for a target system, which 

allows us not only to continuously monitor the current 

state but also to precisely evaluate the future state of the 

target system. Figure 3 depicts one of the typical 

applications based on the digital twin. 

 

 
Digtal twin                        Target system 

Figure 3. Typical application of digital twin, adopted from 

Ref. [16]  

 

As can be seen from Fig. 3, its application domain is 

the on-line healthcare of patients. To this end, it is 

necessary to develop a digital twin that allows us to 

characterize the features (premonitory symptoms) of 

tremendous physiological signals and classify the status 

(diagnostics) of patients. Once we have this digital twin, 

it can be used to not only monitor the current condition 

of patients in real-time but also support medical staff by 

providing valuable information, such as the expected 

status of patients or effective emergency measures for 

them.  

Here, it is very interesting to imagine that the 

uncertainty of PSA results can be significantly reduced 

if we have the digital twin of a TH code. In general, 

since the rune time of TH codes for determining the 

consequence of each accident scenario takes a few hours 

to several days, it is only possible to analyze a limited 

number of accident scenarios with limited resources 

(time and budget). However, if we have a technique to 

build a digital twin that can soundly emulate the output 

of a specific TH code in a very short time (e.g., a couple 

of seconds), it is expected that we are able to analyze 

tremendous number of accident scenarios without 

spending huge amount of resources. This means that not 
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only the uncertainty of PSA results can be effectively 

reduced but also a catalog of new accident scenarios can 

be distinguished, which were not considered in existing 

PSA results. 

 

4. Feasibility of digital twin 

In order to investigate the feasibility of a digital twin 

for a TH code, a deep learning model was developed 

based on a long short-term memory (LSTM) technique. 

The LSTM technique is a kind of recurrent neural 

networks (RNNs) that have feedback connections to 

store both the current and past information. For this 

reason, RNNs are good at many applications such as 

speech processing, music composition or interpolating 

time series data [17, 18]. It should be noted that, 

although the explanation of detailed technical basis 

about RNNs would the beyond of this paper, their basic 

concept is to estimate a future condition. Here is an 

example for explaining the benefit of RNNs. 

In case of estimating the electrical demand of a certain 

country, it is evident that its value varies along with 

diverse factors, such as the population, the number of 

households, the amount of gross domestic product, 

outdoor temperature, and humidity. The problem is that 

the development of an electrical demand estimation 

model is not easy because of complicated causalities 

among these factors. In addition, this model should be 

dynamic so that it can properly represent dynamic 

interactions as time goes by. For example, since the 

highest and lowest temperature become different in 

every month, their values of past months are very 

important for estimating the electrical demand of the 

next month. In this regard, RNNs are powerful because 

they are modeled so that their information collected 

from past months play as inputs to estimate the 

electrical demand of the next month. Actually, Fig. 4 

shows the result of a case study to predict the electrical 

demand of the whole country based on a LSTM model 

that was constructed by ten selective factors. As can be 

seen from Fig. 4, it seems that the LSTM is good at 

interpolating the trend of the electrical demand.  

 

5. Discussion and conclusion 

In terms of reducing the uncertainty of PSA results, it 

is expected that at least two issues should be technically 

resolved: (1) identifying accident scenarios as realistic 

as possible, and (2) evaluating the consequence of 

accident scenarios. Of them, the first issue can be 

addressed by applying dynamic PSA techniques that 

allow us to create diverse accident scenarios after 

combining various kinds of process parameters, 

automated actions and human actions.  

In addition, it is expected that the second issue can be 

soundly resolved by adopting deep learning techniques 

such as a LSTM. In other words, if we are able to 

develop a digital twin that can provide (or emulate) 

reliable results of a specific TH code, then it is strongly 

anticipated that more fast evaluations about the 

consequence of each accident scenario can be done. In 

this aspect, this study would be an initial step for 

developing such digital twin. 
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Figure 4. Electrical demands – Comparing ground truth and estimation 
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