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1. Introduction 

 

The core protection calculator system (CPCS) is  

digital computers which continuously calculate a 

departure from nucleate boiling ratio (DNBR) and a local 

power density (LPD) for OPR1000 (Optimized Power 

Reactor 1000) and APR1400 (Advanced Power Reactor 

1400) nuclear power plants (NPPs). It initiates a reactor 

trip if required under particular transients to prevent 

violation of the DNBR and LPD safety limits. In order to 

calculate the DNBR and the LPD, the CPCS uses the core 

averaged axial power distribution (APD). The APD of 20 

nodes is synthesized by using the 3-level ex-core neutron 

flux detector signals based on a shape annealing matrix 

(SAM) and the cubic spline interpolation method in the 

CPCS. However the current APD synthesis method has 

inaccuracy at the end of cycle (EOC) during plant 

operation, which has the possibility to increase the 

penalty in the calculation of the DNBR and the LPD. 

Currently, the In-COre Protection System (ICOPS) is 

being developed to replace the CPCS using Korea’s own 

technology. The following is a study on improving the 

accuracy of the APD synthesis for the ICOPS. 

 

It was proposed that an artificial neural network (ANN) 

with a simulated annealing (SA) method can synthesize 

the APD well [1]. The ANN is one of the efficient and 

reliable algorithms for the function approximation [2]. 

The SA method is a well-known algorithm for 

approximating the global optimum of a given function [3] 

and used to find the global optimum of ANN weights in 

this study. When learning ANN weights, the design data, 

which are used for the CPCS overall uncertainty analysis, 

were considered. 

 

In this study, we proposed the ANN with the SA 

method using the plant operation data to improve the 

accuracy of APD synthesis for the ICOPS. The ANN 

weights were learned by using the design data as well as 

the plant operation data, and the results were compared 

with the current method. 

   

2. Current Method 

 

There are 3-level ex-core neutron flux detectors on 

each quadrant outside the reactor core in OPR1000 and 

APR1400 NPPs. The ex-core neutron flux signal is 

converted to the core peripheral power by using SAM as 

Eq. (1). The CEA shadowing factor is then considered to 

the 3-level core peripheral power, and the core average 

APD of the 20 nodes is finally calculated using the cubic 

spline interpolation method. 
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where 𝑆11~𝑆33 are the elements of SAM; 𝐷1~𝐷3 are the 

ex-core neutron flux detector signals; 𝑃1~𝑃3 are the core 

peripheral power. 

 

To evaluate the accuracy of APD synthesis, the APD 

root-mean-square (RMS) error is used as follows: 
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where 𝑁𝑛𝑜𝑑𝑒  is total number of axial nodes for 

calculating the RMS error; 𝑃𝐷𝑖
𝐶𝑃𝐶𝑆  is the ith APD 

synthesized by CPCS; 𝑃𝐷𝑖
𝑅𝑒𝑓

 is the ith reference APD 

measured by in-core neutron flux detector. 

 

SAM and the cubic spline interpolation method are a 

very good way to represent the axial power distribution 

of CPCS. However the current method has a limitation 

for calculating the APD at the end of cycle (EOC) 

because SAM values are measured at the beginning of 

cycle (BOC) and used for the entire cycle. Therefore, as 

the burn-up increases over the entire cycle, the accuracy 

of the APD decreases and the RMS error increases.  
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Fig. 1. APD RMS Errors of the operation data  

for Hanul unit 4 cycle 8 
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Fig. 1 shows the APD RMS errors of the plant 

operation data with 100% power over the entire cycle for 

Hanul unit 4 cycle 8. The APD RMS errors are getting 

increased and exceeded 8% after the middle of cycle 

(MOC) as the burn-up increases. The maximum RMS 

error of the entire cycle is 13.22%(@16.67GWD/MTU). 

If the RMS error exceeds 8%, then an additional penalty 

is given for the conservatism of DNBR and LPD 

calculation. In this case, DNBR and LPD margins of 

CPCS are reduced due to an additional penalty. 

 

3. Proposed Method 

 

We proposed ANN with SA method instead of SAM 

and the cubic spline interpolation method for the APD 

synthesis. The accuracy of APD synthesis was improved 

by using the design data and the plant operation data 

together for ANN weights learning. Proposed method 

makes the APD RMS errors not increasing, even though 

the burn-up increases. 

 

3.1. Artificial neural network (ANN) 

 

We used the feed-forward neural network trained by 

back-propagation. Fig. 2 shows the ANN structure for 

APD synthesis. Layers of the network are consisted of 3 

parts; input layer, one hidden layer, and output layer. The 

input layer has 4 nodes; the 3-level ex-core neutron flux 

detector signals, which are normalized so that the sum is 

one, and one constant node, IC. The hidden layer has 16 

nodes; 15 intermediate nodes and one constant node, HC. 

According to the universal approximation theorem [2], a 

feed-forward network with a single hidden layer 

containing a finite number of neutrons can approximate 

continuous functions. So we used only one hidden layer 

for APD synthesis using ANN. The output layer is 

consisted of 20 nodes of APD.  

 

 
 

Fig. 2. ANN Structure for APD synthesis  

 

The mathematical form of feed-forward ANN for 

APD synthesis is given by Eq. (3).  

 

𝑂𝑘 = 𝑓 (∑ 𝛽𝑘𝑗 ∙ 𝑓

16
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where 𝑂𝑘 is value of the output nodes; function 𝑓 is an 

activation fuction; 𝛽𝑘𝑗 is ANN weight from the hidden 

layer to the output layer; 𝑤𝑗𝑖  is ANN weight from the 

input layer to the hidden layer; 𝐼𝑖  is a value of the input 

nodes,  

 

The activation function that we used for APD 

synthesis is hyperbolic tangent, which is shown as Eq. 

(4), for the ANN node of the hidden and output layers 

because hyperbolic tangent is differentiable for back-

propagation and is a sigmoid function for preventing the 

divergence during ANN learning. 

 

𝑓(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
                             (4) 

 

The objective function for ANN learning is defined as 

the sum of the difference between the reference value and 

the calculated value by ANN as Eq. (5).  

 

𝐸 =
1

2
∑(𝑇𝑘 − 𝑂𝑘)2   

𝑘

                      (5) 

 

where 𝑇𝑘 is the reference value kth node of APD; 𝑂𝑘 is 

the value calculated by ANN for kth node of APD. 

 

In order to learn the optimal ANN weights that can 

synthesize the APD well, the objective function, E must 

be minimal. Each ANN weight is updated to its partial 

derivative so that the slope of the objective function, E 

moves continuously to the lower side, thereby reaching 

the point where E becomes minimum. This method is 

called the gradient descent. Eq. (6) and Eq (7) are the 

optimization of parameters of the gradient descent. 

 
𝜕𝐸
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𝜕𝐸

𝜕𝑤𝑗𝑖

= 0                                      (7) 

 

ANN weights were divided into two parts and learned 

separately. 360 ANN weights of the network, except for 

the 20 ANN weights associated with the constant of the 

hidden layer, HC, were learned using the design data, 

which are included various axial power shapes. After 

determining the 360 ANN weights learned from the 

design data, 20 ANN weights connected with HC were 

learned using the plant operation data. The start-up test 

data for SAM measurements were used as the plant 

operation data. 

 

3.2. Simulated annealing (SA) 

 

SA is used to find the global optimum of the ANN 

weights. At first, the ANN weights are randomly chosen 

within given range to initiate the learning ANN weights, 

and then local optimum of ANN weights are calculated 
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by the back-propagation. By the Metropolis criterion, 

this local optimum is selected or randomly changed again 

within the distance for SA. Finally the global optimum 

of ANN weights is calculated as the back-propagation by 

ANN and the probabilistic update of ANN weights by 

SA are performed repeatedly. 

 

3.3. Test results 

 

We applied the proposed method to the plant operation 

data with 100% power over the entire cycle for Hanul 

unit 4 cycle 8. The APD RMS errors in Fig. 3 and Fig. 4 

are the result of using the ANN with SA method, but 

there is a difference in learning data for ANN weights. 

Fig. 3 shows the result learning only with the design data, 

but Fig. 4 shows the result of the proposed method, 

which is learned using the design data as well as the plant 

operation data. Comparing the two results in Fig. 3 and 

Fig. 4, the APD synthesis accuracy of the proposed 

method is further improved. 
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Fig. 3. APD RMS errors learning only with  

the design data for Hanul unit 4 cycle 8 
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Fig. 4. APD RMS errors using the proposed method 

for Hanul unit 4 cycle 8 

 

Compared with the results of the current method, Fig. 

1, the APD RMS errors as shown in Fig. 4 are below 4% 

for the entire cycle and the maximum RMS error is 

3.54%(@16.6 GWD/MTU). The maximum RMS error is 

reduced by 9.68% for the entire cycle. Using the 

proposed method, the additional penalty is not required 

for DNBR and LPD calculation because the APD RMS 

errors does not exceed 8%.  

 

4. Conclusion 

 

We proposed the ANN with the SA method instead of 

SAM and the cubic spline interpolation method to 

synthesize the APD. Previously, the design data were 

only used for the ANN weights learning, but the APD 

synthesis accuracy was further improved by using the 

plant operation data as well as the design data for 

learning the ANN weights. The proposed method is more 

accurate than the current method as the results of the 

APD RMS errors and can improve the reliability of the 

ICOPS. 
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