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1. Introduction 
 

The uncertainty quantification and sensitivity 
analyses have been widely conducted for computational 
codes. For evaluation of uncertainties of the code 
analysis, the data assimilation [1], a methodology of 
model calibration, is needed to refine the parameters of 
physical model, initial conditions and boundary 
conditions, which are thought to have major 
contributions to the response uncertainties. For a highly 
nonlinear problem that cannot be solved analytically, 
sampling approaches are effective ways to perform the 
data assimilation and quantify the uncertainty of the 
important parameters. As a representative methodology, 
Markov Chain Monte Carlo (MCMC) algorithm [2,3], 
which can find the parameter distributions via 
constructing Markov chains of random samples, is quite 
useful, in particular for the simulation of the nonlinear 
problems. Recently, MCMC was utilized in uncertainty 
estimation for thermal hydraulic system calculation by 
Heo et al. (2018) [4]. Based on the MCMC method with 
Bayes’ theorem, they conducted data assimilation using 
1D small scale tests, FEBA [5,6] and refined the 32 
important physical models and 5 boundary conditions. 
Subsequently, based on the calibrated parameter 
distributions, a posteriori distributions for large scale 
(FLECHT-SEASET) [7] and multi-dimensional 
(PERICLES) tests [8] were obtained. The uncertainty 
bands for the FLECHT-SEASET and PERICLES 
mostly covered the experimental data. It was a 
successful application of MCMC to the uncertainty 
quantification for thermal hydraulic system code, but it 
required substantial CPU time to conduct the data 
assimilation. 

In this study, to reduce the computing demand for 
thermal hydraulic system calculation during the MCMC 
simulation, the machine learning was used to develop 
surrogate models for the complex system. The machine 
learning has been recently used in many fields of 
engineering. A key methodology of the machine 
learning is the neural network. The neural network is a 
useful modeling tool to solve a complex problem of 
multi-physics and multi-system via deep learning and 
deep network. 

In this study, the data assimilation methodology using 
machine learning models was suggested for the thermal 
hydraulic system to determine the uncertainties of the 
modeling parameters and the boundary conditions and 
uncertainties on the code simulation results. As the first 

step, the machine learning models were developed by 
learning the calculation results for the scattered 
conditions. Using the machine learning models, a 
posteriori distributions were obtained using 1D 
FLECHT-SEASET reflood tests and subsequently blind 
calculations were conducted to examine whether the 
calibrated parameter distributions simulate multi-
dimensional PERICLES tests. 
 
2. Construction of Neural Network Based Surrogate 

Model 
 

To develop the neural network based surrogate model, 
the Tensorflow code [9] developed by Google was used. 
In the Tensorflow code, it is easy to adjust the number 
of neurons and hidden layer and to select the activation 
function. In this study, ReLU function [10] was selected 
as the activation function in order to make deep neural 
networks. 

The neural network consists of an input layer, hidden 
layers and an output layer. In an input layer and an 
output layer, the input and the output variables for code 
calculations should be chosen properly. 5 boundary 
conditions and 30 physical variables which are 
important for the quenching phenomenon were selected 
as the input variables. In addition to that, the variables 
for the time and the location should be selected. 
However, the location variable was not considered in 
the input layer because there were difficulties for 
constructing the surrogate model applicable to all 
locations. Thus, the constructed neural network model 
had the total 36 input variables and predicted the wall 
temperature as the output. 

The neural network should be trained by using the 
database for the target problem. In this study, the 
database of SPACE calculation results for Run number 
31302 of the FLECHT-SEASET experiments was used. 
The database consists of 6 uncertainty bands with 
respect to the axial location (2, 4, 6, 8, 10 and 11 ft). An 
uncertainty band includes 10000 wall temperature 
profiles for 10000 distributed cases. A profile includes 
the wall temperature during 255 time steps (5-259 sec). 
Thus, there are 2550000 data for one location.  

Based on that database, the six neural network 
models were trained and constructed for six axial 
locations. In order to obtain the best accuracy, the 
numbers of neurons and hidden layers were optimized 
and seven hidden layers having twenty neurons were 
given in every network models. All six models have 
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good accuracies less than the root-mean-square (RMS) 
error of 10 % in comparison with the database of 
SPACE calculation results. The detail information for 
the constructed surrogate models is shown in Table 1. 

 
Table 1. Neural network based surrogate models 

Index Location Hidden layers 
× Neurons RMS error 

1 2 ft 7 × 20 1.6 % 

2 4 ft 7 × 20 4.3 % 

3 6 ft 7 × 20 8.9 % 

4 8 ft 7 × 20 9.9 % 

5 10 ft 7 × 20 7.7 % 

6 11 ft 7 × 20 6.3 % 
 

3. Data assimilation 
 
To consider scaling problems when performing 

model calibration, two different reflood test data were 
used for the following two step analysis. In the first step, 
the model calibration was performed using FLECHT-
SEASET test data. In the second step, uncertainty 
estimation was conducted for the cladding temperature 
for 2D PERICLES test using the model distributions 
obtained in step 1. 

For the step 1 above, the neural network based 
surrogate model was utilized when performing the 
MCMC simulation. The surrogate model generates 
chains of parameter samples with a tremendous 
reduction in the computational demand. To perform 
data assimilation by calibrating models in the simulation 
code, the results of FLECHT-SEASET experiments 
were used. Figure 1 shows the a posteriori distribution 
of selected parameters obtained by MCMC simulation 
with neural network based surrogate models. The 
experimental data and the nominal values of wall 
temperatures produced by reference calculations at the 
axial level of the measuring position 8 ft for the 
FLECHT-SEASET obtained using the surrogate models 
are presented in Figures 2. The refined temperature 
distributions computed using about 10,000 a posteriori 
parameter samples at the same axial level for the 
FLECHT-SEASET test is also presented in the figure. 
As shown in the Figure 2, it was observed that the fuel 
rods were quenched earlier for the SPACE reference 
calculation. However the prediction of the wall 
temperatures is improved after refining the parameter 
distributions such that the adjusted distributions of the 
simulation output cover the entire experimental data sets. 
This confirms the parameters selected for this analysis 
are the major sources of the modeling uncertainties for 
reflood tests, and an effective algorithm for a nonlinear 
system is used to calibrate the parameter distributions. 

 

 

 

 
Figure 1. A posteriori distribution of the most 

influencing parameters obtained by MCMC simulation 
with neural network based surrogate models. 

 
PERICLES experiments has been conducted to 

investigate multi-dimensional effects which can occur in 
the reactor core. For the step 2 of this analysis, a 
simulation was conducted in order to perform best-
estimated prediction for 2D PERICLES experiments 
with thermal hydraulic parameters obtained via model 
calibration using 1D FLECHT-SEASET experiments. 
The experimental data and the posterior wall 
temperature distributions, i.e., the temperature 
distributions calculated by completing uncertainty 
propagation for the calibrated parameter samples, for 
the PERICLES test no. 64 are presented in Figure 3. 
The figure shows that the adjusted distributions of the 
SPACE simulation sometimes do not cover the 
experimental data, but overall the wall temperature is 
well predicted by SPACE code. 
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Figure 2. Uncertainty bands of the calibrated wall 

temperature at the axial location of 8 ft along with the 
experimental data for the FLECHT-SEASET run no. 

31302 
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Figure 3. Uncertainty bands of the calibrated wall 

temperature along with the experimental data for the 
PERICLES run no. 64 

 
4. Conclusion 

 
The goal of this study is to quantify the uncertainties 

on the parameters via conducting data assimilation with 
a minimum computational demand accomplished by 
developed neural network models. For this analysis, first 
of all, the Bayesian approach was used to determine the 
a posteriori distributions of the parameters for the 
FLECHT-SEASET test data. The neural network model 
provided an alternative solution with a tremendous 
reduction in the computational demand for the 
calculation. For the forward uncertainty propagation 
performed as a blind calculation, parameters’ 
uncertainty bands were mapped through the 
computational model to assess the uncertainty bands of 
the calculation results for the PERICLES. The result 
shows that the adjusted distributions of the simulation 
output mostly cover the experimental data. Based on the 
calibrated parameter uncertainties, each model’s impact 

to the system was identified to determine the major 
sources of the modeling uncertainties. That will be used 
to discuss further model development.  
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