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1. Introduction 

 
Researches on Multi-Unit Probabilistic Risk 

Assessment (MUPRA) are actively performed 

worldwide. And, current efforts are being made to 

expand the scope of PRA for estimating site risk beyond 

single-unit. MUPRA is an essential technology to 

achieve this. Most inter-unit dependencies are 

considered in level 1 PRA. Most pressurized water 

reactors have very few dependencies that need to be 

considered in Multi-Unit level 2 PRA because 

containments are independent in Korea. However, many 

source term category (STC) combinations can occur in 

Multi-Unit level 3 PRA. As the number of units increases 

in a multi-unit accident, the number of STC 

combinations increases exponentially. It is maybe 

possible to calculate all STC combinations up to two 

units, but it is very difficult to calculate all STC 

combinations when the number of units is more than 

three. Therefore, new method to estimate consequences 

of many STC combinations was developed in this study. 

To solve this problem, Support Vector Regression (SVM) 

was utilized among Artificial Intelligence (AI) 

techniques. Machine learning was performed by training 

set based on certain criteria, and the ability of estimating 

consequences was tested for the model completed. 

 

2. Methods and Results 

 

It was needed to create an SVR model for early fatality 

(EF) and latent cancer fatality (LCF), respectively. This 

was because the tendency to EF and LCF was different 

even if same amount of radioactive materials were 

released. It was quite difficult to create an SVR model 

for EF where threshold doses were considered. Therefore, 

only SVR model for LCF would be presented in this 

study. SVR model for EF would be developed in the 

future. Additionally, two OPR1000 nuclear power 

reactors were selected for multi-unit accidents. 

 

2.1 Consequence Modeling 

 

The MACCS 3.11 version developed by the Sandia 

National Laboratory (SNL) was utilized for calculations 

of consequence [1]. The population-weighted risk which 

was obtainable result by the MACCS was considered as 

the consequence. 

It was needed to complete the MACCS models for the 

calculations of consequence. Most domestic input 

parameters investigated by our research team for the 

MUPRA were used except for decontamination part [2]. 

ATMOS, EARLY, CHRONC, and COMIDA2 modules 

were considered for long-term effects. Intermediate 

phase and emergency response actions, such as 

evacuation, sheltering, and relocation, were not 

considered. It is general to consider the emergency 

response actions for a realistic level 3 PRA. However, 

the emergency response actions are the most dominant 

input parameters affecting consequence. Therefore, the 

uncertainties of the SVR model could be very large when 

the emergency response actions were considered. It 

would be needed to develop the SVR model considering 

the emergency response actions although those were not 

considered in this study.  

 

2.2 Support Vector Machine 

 

Support vector machine (SVM) technique was 

originally developed for solving classification problems. 

However, SVM has been extended and widely utilized to 

solve nonlinear regression problem along with the 

development of Vapnik’s ε-insensitive loss function. 

SVR adopts the structure risk minimization (SRM) 

principle unlike conventional neural network adopting 

empirical risk minimization (ERM). The SRM principle 

is be superior to the ERM principle because the SRM 

seeks to minimize an upper bound of the generalization 

error consisting of both training error and confidence 

level [3]. Brief description of SVR model is below. 

Given a set of data (𝑥𝑖 , 𝑦𝑖) (i: i-th samples) where 𝑥𝑖 
is the input vector to SVR, 𝑦𝑖  is the true output value, 

SVR uses Eq.(1) for an approximation function which is 

 

𝑦 = 𝑓(𝑥) =∑𝑤𝑖𝜙𝑖(𝑥)

𝑁

𝑖=1

= 𝒘𝑻𝝓(𝒙) + 𝑏 (1) 

 

where 𝜙𝑖(𝑥) is high-dimensional feature space which is 

nonlinearly mapped from the input space x. Weight 

matrix(w) and a bias(b) are estimated by minimizing Eq. 

(2) which is regularized risk function. 

 

𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛 (
1

2
‖𝑊‖2 +

𝐶

𝑁
∑𝐿𝜀(𝑌𝑖 , 𝑓(𝑋𝑖))

𝑁

𝑖=1

) 

𝐿𝜀(𝑌𝑖 , 𝑓(𝑋𝑖))

= {
0 |𝑌𝑖 − 𝑓(𝑋𝑖)| ≤ 𝜀

|𝑌𝑖 − 𝑓(𝑋𝑖)| − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑠
} 

(2) 

 

Minimizing ‖𝑊‖2  which is regularized term makes a 

regression function as flat as possible (function capacity). 

Second term is empirical error estimated by the ε-

insensitive loss function shown in Fig.1. This imposes 

zero loss for predicted values within the ε-tube and some 

penalties for predicted values outside the tube. Those 

penalties are decided by the value C. Values of ε and C 



Transactions of the Korean Nuclear Society Autumn Meeting 

Yeosu, Korea, October 25-26, 2018 

 

 
are user-specific input parameters. Values of W and b can 

be obtained by introducing the primal objective function 

Eq.(3) including slack variables 𝜉𝑖 and 𝜉𝑖
∗ (Fig.2). 

 

𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛 (
1

2
‖𝑊‖2 +

𝐶

𝑁
∑(𝜉𝑖 + 𝜉𝑖

∗

𝑁

𝑖=1

)) 

Subject to: {

𝑌𝑖 −𝑊 ∙ 𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑊 ∙ 𝜙(𝑥𝑖) + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0

} 

(3) 

 

And, this minimization problem can be solved by dual 

form and kernel function. After some mathematical 

works, Eq.(1) would be Eq.(4) which is explicit form. 

 

𝑦 = 𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑋𝑖 , 𝑋) + 𝑏

𝑁

𝑖=1

 (4) 

 

Values of 𝛼𝑖  and 𝛼𝑖
∗  are Lagrange multipliers and 

𝐾(𝑋𝑖 , 𝑋) is kernel function. 

There are some typical kernel functions such as linear, 

polynomial, sigmoidal, and radial basis function (RBF). 

It is possible to solve nonlinear problems by using kernel 

function. RBF (Eq.(5)) was selected for kernel function 

in this study. 

 

𝐾(𝑋𝑖 , 𝑋𝑗) = exp (−
‖𝑋𝑖 − 𝑋𝑗‖

2

𝜎2
) (5) 

 

Value of 𝜎2 is the width parameter of RBF. 

 

 
Fig.1. ε-insensitive loss function 

 

 
Fig.2. ε-tube and slack variables 

 

2.3 Inputs and Outputs 

 

It is important to select input parameters (𝑋𝑖)  that 

reflects the characteristics of output to train SVR model 

well. For this, temporal and radioactive characteristics 

were considered [4]. Firstly, release delay times 

(PDELAY in MACCS) from accident initiation were 

considered for temporal characteristic of each STC. 

PDELAYs of each STC and the difference between the 

two were selected for input parameters (𝑋1, 𝑋2, 𝑋3 ). 

These were considered to reflect the variability of 

weather conditions applied at the releases. Secondly, 

sum of release fractions (RELFRC in MACCS) for each 

radioactive material class (Xe, Cs, Ba, I, Te, Ru, Mo, Ce, 

La) were selected for input parameters (𝑋4~𝑋12). These 

were considered to reflect some linearity between the 

amount of radioactive material and consequence. All 

input parameters were normalized as Eq.(6) to have a 

value between zero to one. 

 

𝑋𝑖,𝑛𝑜𝑟𝑚 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (6) 

 

2.4 Training and Testing Set 

 

The consequence results of single-unit level 3 PRA for 

the reference reactor were calculated and utilized for 

selecting training set. Sixteen STCs were lined up 

according to the LCF population-weighted risk result. 

And, twelve STCs were selected as evenly as possible 

based on the minimum and maximum results. The 

remaining STCs were considered as testing set. The 

training and testing set of this study were shown in Table 

Ⅰ. The number of samples were counted by eliminating 

redundancy because the reference reactors were same 

nuclear power reactor types. The training set consisted of 

samples which were only combinations of twelve STCs. 

And, the testing set consisted of samples including at 

least one of the four STCs selected. 

 

Table Ⅰ: Training and Testing Set 

 Training Set Testing Set 

STC # 
1, 2, 3, 6, 7, 10, 13, 

15, 16, 17, 18, 19 
4, 8, 11, 12 

Number of 

Samples 
78 58 

 

2.5 Training SVR Model 

 

MATLAB 2017a version was utilized to train SVR 

model. MATLAB offers support vector regression by 

‘fitrsvm’ which is built-in function. Therefore, if users 

provide only a few input parameters, such as training set, 

type of kernel function, epsilon, penalty coefficient, 

MATLAB automatically generates SVR model. By 

using this built-in function, it was possible to train and 

generate the SVR model estimating LCF population-

weighted risk (consequence). Additionally, epsilon and 
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penalty coefficient were assigned automatically by using 

optimization option of ‘fitrsvm’ built-in function. 

 

2.6 Results. 

 

Verification of the SVR model trained was performed 

by root mean square error (RMSE) and mean relative 

error (MRE) which are defined in Eq.(7), (8), 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (

𝑌𝑃 − 𝑌𝑇
𝑌𝑇

)
2𝑁

𝑖=1
 (7) 

 

𝑀𝑅𝐸 =
1

𝑁
∑ |

𝑌𝑃 − 𝑌𝑇
𝑌𝑇

|
𝑁

𝑖=1
 (8) 

 

where N is the number of samples, 𝑌𝑃 is a consequence 

prediction of SVR model trained, and 𝑌𝑇  is a true 

consequence calculated by MACCS. 

Firstly, a few types of kernel function were considered 

to train the SVR model. RBF, linear, and polynomials 

were applied, and the results were shown in Table Ⅱ. All 

input parameters (𝑋1~𝑋12) in these calculations. 

 

Table Ⅱ: Performance Results of the SVR model 

according to Kernel functions 

Kernel Function RMSE MRE 

RBF 0.0736 0.0586 

Linear 0.0898 0.0712 

Polynomial (2nd) 0.1671 0.1373 

Polynomial (3rd) 0.0787 0.0560 

Polynomial (4th) 0.0725 0.0560 

Polynomial (5th) 0.1050 0.0760 

Polynomial (6th) 0.8035 0.7374 

 

As expected, it was confirmed that the RBF was 

appropriate kernel function. Third and fourth order 

polynomials were also appropriate kernel functions. 

However, as the order of the polynomial kernel function 

increased, errors were increased. Based on these results, 

the RBF was expected to be appropriate kernel function. 

The values of RMSE and MRE should be decreased by 

continuous future research. 

Secondly, SVR model was trained by using temporal 

input parameters (𝑋1~𝑋3) and one out of nine radioactive 

material classes to investigate the effect of each 

radioactive material class. Based on these results, the 

radioactive material classes which relatively had the 

small RMSE and MRE were considered as input 

parameters at the same time. These results are shown in 

Table Ⅲ.  

 

 

 

 

 

 

 

Table Ⅲ: Performance Results of the SVR model 

according to Input parameters 

Considered 

Input Parameters 
RMSE MRE 

𝑿𝟏~𝑿𝟑 + Xe (𝑿𝟒) 1.1071 0.8410 

𝑿𝟏~𝑿𝟑 + Cs (𝑿𝟓) 0.1644 0.1337 

𝑿𝟏~𝑿𝟑 + Ba (𝑿𝟔) 0.4653 0.3574 

𝑿𝟏~𝑿𝟑 + I (𝑿𝟕) 0.2161 0.1557 

𝑿𝟏~𝑿𝟑 + Te (𝑿𝟖) 0.3276 0.2630 

𝑿𝟏~𝑿𝟑 + Ru (𝑿𝟗) 0.9612 0.6845 

𝑿𝟏~𝑿𝟑 + Mo (𝑿𝟏𝟎) 1.1230 0.7745 

𝑿𝟏~𝑿𝟑 + Ce (𝑿𝟏𝟏) 0.3068 0.2144 

𝑿𝟏~𝑿𝟑 + La (𝑿𝟏𝟐) 0.6131 0.4751 

𝑿𝟏~𝑿𝟑 + 

Cs, I (𝑿𝟓, 𝑿𝟕) 
0.5923 0.4086 

𝑿𝟏~𝑿𝟑 + 

Cs, I, Te, Ce (𝑿𝟓, 𝑿𝟕) 
0.6197 0.4475 

 

The results were slightly different from the expectations. 

The SVR model was not trained well although only 

radioactive material classes with small RMSE and MRE 

were considered. It was judged that there were some 

correlations between input parameters considered. 

Therefore, the selection of input parameters which are 

appropriate to train SVR model is very important. 

 

3. Conclusions 

 

New methodology for estimating consequences of 

STC combination was developed in this study. For this, 

SVR was applied among AI techniques. Firstly, the 

appropriate input parameters were selected in the view of 

temporal and radioactive material classes. Secondly, the 

training and testing sets were set considering the single 

unit level 3 PRA results of the reference reactor. Finally, 

the SVR model was trained by using ‘fitrsvm’ built-in 

function of MATLAB. In this step, several sensitivity 

analyses were performed about kernel function and 

selection of input parameters. It was confirmed that RBF 

was appropriate kernel function type, and the appropriate 

selection of input parameters was very important. 

The SVR model developed in this study only considers 

two unit’s STC combinations. More advanced SVR 

model treating more units should be developed in the 

future research. Moreover, other AI techniques such as 

neural network could be applied in this study. 

Conclusively, this study would contribute to 

development of Multi-Unit level 3 PRA. 
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