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1. Introduction 
 

Control applications such as reactor operation or 
remote handling in decommissioning of nuclear facilities 
involve trajectory generation. For example, we want the 
reactor power change following smooth trajectories 
without abrupt changes in control reactivity or we want 
to move remote handling manipulators smoothly for safe 
handling of hazardous radioactive materials. These 
trajectory generation problems can be modeled as a 
point-to-point motion problem in control theory. 

 
It is well known that, in optimal control theory, simple 

trapezoidal velocity models can achieve time-optimal 
motions. Fig.1 shows a trapezoidal velocity model. As 
shown in Fig. 1, when the velocity reaches the maximum 
value at the time instant t, ,the acceleration jumps from 
a non-zero constant value to zero. The rate of changes in 
the acceleration is called jerk. The jumps also occur at 
other time instants, when there are non-zero jerks. In 
trapezoidal velocity model, the discontinuities of the 
acceleration are caused by the jerks exhibiting instant but 
infinite values. The issues with the trapezoidal velocity 
profiles include overshoots, and excitation of 
unnecessary vibration modes in control systems; you 
would feel uncomfortable if you sit in a car that 
accelerates or decelerates suddenly. 
 

 
 

Fig. 1. Trapezoidal velocity and its acceleration profile 
 
The s-curve was introduced to remedy the short 

comings' of the trapezoidal velocity model [1]. Most of 
the research on s-curve or trapezoidal motion profiles in 
motion control community has been focusing on time-
optimality of the motion. This is partially due to the 
majority of the motion control applications are in 
manufacturing where productivity and efficiency are the 
priorities. This study, however, summarizes the general 
model of polynomial s-curve motion profiles focusing on 
the minimization of jerk so that the resulting profiles 
exhibit smooth and safe motion. 
 

2. Trajectory Modeling 
 

This section summarizes the work of Nguyen et al.[1], 
which introduced the generalization of s-curve model. 
Nguyen proposed to use the concept of “template.” The 
template of a model is defined as the highest order 
derivative of position profile whose peak value is finite. 

 
2.1 2nd order Model 

 
In trapezoidal velocity model (Fig.2), its position is 

determined by 2nd order polynomials. So it is sometimes 
called 2nd order polynomial model. As mentioned earlier, 
the jerk in trapezoidal model exhibits infinite value when 
the acceleration makes a jump in its value, which is 
potentially problematic for physical control systems. The 
trapezoidal profile has three phases: 

  =     ≤  ≤ 0  <  < −   ≤  ≤  

 
Since the acceleration is finite and the jerk is infinite, 

the template, T, of 2nd order model is the acceleration 
profile given above: T =    ≤  ≤ 0  <  < −  ≤  ≤  

 

 
 

Fig. 2. Trapezoidal trajectory model[1] 
 
 

2.2 3rd  order Model 
 
For polynomial models whose orders are higher than 

2, the jerks exhibit finite values and their velocity 
profiles are smooth during motions [1]. The 3rd order 
model has seven phases: 
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 =
⎩⎪⎪⎨
⎪⎪⎧ > 0,  ≤  ≤  = 0,  ≤  ≤  < 0,  ≤  ≤  = 0,  ≤  ≤  < 0,  ≤  ≤  = 0,  ≤  ≤  > 0,  ≤  ≤ 

 

 
In this case, the jerk of the model has finite amplitude 

and the template, by using the template T,  is as follows: T =    ≤  ≤ −  ≤  ≤  

 

 
 

Fig. 3. 3rd order trajectory model[1] 
 

2.3 nth  order Model 
 
By induction, the template of nth order s-curve model 

can be expressed in a recursive manner: T =    ≤  ≤ −  ≤  ≤  

 

 
 

Fig. 4. Template of the nth order s-curve model[1] 
 
 

3. Minimum-Jerk Trajectory 
 

Our interest lies in finding smooth trajectories with 
minimum jerk. More specifically, we want to find a 
family of trajectories that minimizes the following cost 
functional: J() ≔ 12 ⃛() = 12 ℒ  

where ()  denotes the jerk of “position” variable, 
and ℒ ≔ ⃛ 

 

The optimization of quadratic cost functions is one of 
the most well studied area [2]. For any function p(t) 
which is sufficiently differentiable in the interval t ≤ ≤  , the necessary condition of optimality suggests 
that p(t) is a solution of the following Euler equation [2]. ∂ℒ∂p −  ∂ℒ∂p⋯+ (−1)   ∂ℒ∂p() = 0 

Thus we have   = 0 
which implies that, among the general nth order s-

curve trajectories, following 5th order polynomial form 
will exhibit minimum-jerk [2]: p(t) =  +  +  +  +  +  

 
3. Example 

 
The theory developed in the previous section is 

applied to a reactor power tracking scenario. The Palo 
Verde power plant model is used in simulations [3]. 
Control efforts for trapezoidal trajectory and minimum-
jerk trajectory are compared. 

 
3.1 Trajectory for Power Increase 

 
The example scenario assumes a power increase from 

70% of rated power to 100% of rated power. The average 
rate of power increase is set to 3%/sec.  

 
To determine the parameters for the 5th order 

polynomial, six boundary conditions are required: () = P% 	 ̇(t) = 0 ̈(t) = 0 ( + ∆T) = %  ̇(t + ∆T) = 0 ̈(t + ∆T) = 0 
where ∆T = %%.	%  
 
Trapezoidal model requires the determination of three 

parameters: acceleration ( a  ) acceleration & 
deceleration time (∆T), constant velocity time (∆T). 
These parameters are calculated to meet the following 
constraints, % − % =  ̇(τ)  ∆ =	∆ + 2 ⋅ ∆ 

Since there are only two constraints for three 
parameters, we can either add a constraint or fix one of 
the parameters (possibly by trial and error.) One method 
to fix ∆  is to set ∆  equal to the time between two 
time instances where the rate of change of acceleration is 
zero, i.e. () = 0, () = 0 ∆ = t −  = (2) − 10 ⋅ 5  
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3.2 Simulation Result 

 
Fig.4 shows three difference power reference 

trajectories; red, green, and blue line represent 5th order, 
trapezoidal and linear profile, respectively. 

 

 
Fig. 4. Comparison of power reference trajectories 

 
Fig.5 shows the results of power reference tracking, 

using the tracking control method proposed in [3]. 
Control reactivity inputs are compared in Fig.6. As 
expected from the theory, 5th order power reference 
trajectory results in smooth control reactivity input.  

 

 
Fig. 5. Tracking of power reference trajectories 

 

 
Fig. 6. Comparison of control reactivity input 

 
 

4. Conclusion 
 

This study summarizes the general model of 
polynomial s-curve motion profiles focusing on the 
minimization of jerk so that the resulting profiles exhibit 
smooth and safe motion. In reactor control application, 
the jerk minimization of power reference trajectory can 
result in the minimization of wear and tear in the control 
rod drive mechanism. Simulations show that the tracking 
of minimum-jerk power reference trajectory exhibits a 
smoother control reactivity profile. 
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