Preliminary Calculation Results for the Sr-82 Production

Kye-Ryung Kim*, Yong-Sub Cho, Pil-Soo Lee, Sang-Pil Yoon

Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeoncheon, Gyeongju *Corresponding author:kimkr@kaeri.re.kr

1. Introduction

The radionuclide ⁸²Sr is a parent nuclide of ⁸²Rb and has a half-life of 25 days. The production technology of ⁸²Sr using RbCl target was developed by Dr. L.F. Mausner at BLIP (Brookhaven National Laboratory) in 1986 [1]. The ⁸²Sr had been produced by the irradiation of molybdenum with 800 MeV protons at Los Alamos Meson Physics Facility [2-3]. From 1980's the RbCl target has been used for ⁸²Sr production instead of Mo. A 100-MeV proton linear accelerator has been

A 100-MeV proton linear accelerator has been constructed at the end of 2012 and the target irradiation facility for RI production was established in 2016 at the KOMAC (Korea Multi-purpose Accelerator Complex) in Gyeongju. Radio-nuclides which can be produced by high-energy proton beam irradiation, such as ⁶⁷Cu, ⁸²Sr, etc. are main nuclides interested in by KOMAC. In this paper, some calculation results for ⁸²Sr using 100-MeV proton accelerator are presented.

2. Methods and Results

2.1 Specific Activity of ⁸²Sr

The specific activity of purified ⁸²Sr is ≥ 25 mCi/mg according to Sr-82 fact sheet provided by Nordion [4]. It is known that Sr-83, Sr-84, Sr-85 and Sr-86 are coproduced by the proton beam in the target during the irradiation for ⁸²Sr production using RbCl target, as shown in Fig.1. And the specific activity is calculated by the following equation.

Specific activity = activity(Sr-82)/total mass(Sr).

Fig. 1. ⁸²Sr production: a proton beam from a linear accelerator or cyclotron is used to irradiate a rubidium chloride target, and the Rb is converted to ⁸²Sr by the following nuclear reactions ⁸⁵Rb(p,4n) or ⁸⁷Rb(p,6n). Analysis of the purified ⁸²Sr indicates ⁸³Sr, ⁸⁴Sr, ⁸⁵Sr and ⁸⁶Sr are coproduced by the proton beam in the target [5].

2.2 SRIM Code Simulation for Target Design

The cross-section of the nuclear reaction $^{nat}Rb(p,x)^{82}Sr$ is shown in Fig.2. As shown in the figure, the cross-section value is in the range of 30~100 mbarn for 45~70 MeV proton beam. To minimize the coproduced radioisotopes of strontium, the proton energy to the target has to be controlled in the range of 50~68 MeV [1].

Fig. 2. Nuclear cross-section of $^{nat}Rb(p,x)^{82}Sr$.

The proton energy reached to the RbCl target was calculated using SRIM code [6]. The calculation results are shown in Fig.3. The proton beam energy from accelerator is 103 MeV and it is passing through the beam window, cooling water, target window, and RbCl target material. The calculation results are summarized in Table.1. As shown in table 1, the incident energy to RbCl target is 67.23 MeV and extraction energy from the target is 52.30 MeV.

Fig. 3. SRIM code calculation results: energy loss profile in depth.

Comp.	Material	Thicknes s	Density [g/cm ³]	Extraction Energy [MeV]
Beam Window	AlBeMat	500 µm	2.07	102.42
Air Gap	Air	20 cm	0.001	102.26
Window	STS	1 mm	8.0	98.21
Cooling Water	H ₂ O	3.5 cm	1.0	68.53
Target Window	STS	250 µm	8.0	67.23
Target	RbCl	7.5 mm	2.8	52.30
Target Window	STS	250 µm	8.0	50.68

Table 1. SRIM code calculation results

2.3 MCNPX Code Simulation for Irradiation Condition Optimization

For the optimization of irradiation condition, we calculated the ⁸²Sr production yield with various irradiation and target conditions. The calculation results are summarized in Table 2. The target thickness and diameter are 2 mm and 5 cm, the proton beam current is 100 μ A, and the irradiation time is 6 hours. The ⁸²Sr activity @ EOB is 9.2E+8 Bq with 50 MeV proton beam incidence.

Table 1. MCNPX code calculation results

Incident Proton Beam Energy [MeV]	Sr-82 Activity @ EOB [Bq]	Sr-83 Activity @ EOB [Bq]	Sr-85 Activity @ EOB [Bq]
30	-	1.94E+10	5.83E+08
40	3.71E+8	3.27E+10	4.51E+8
50	9.20E+08	1.28E+10	2.67E+08
70	3.59E+08	8.49E+09	1.45E+08
80	2.92E+08	5.44E+09	1.06E+08
90	2.49E+08	6.01E+09	1.12E+08
100	2.32E+08	5.26E+09	8.66E+07

3. Conclusions

For the target design and optimization of irradiation conditions, we conducted some calculation using SRIM code and MCNPX code. As a result, we can found out that we can optimized the irradiation conditions by using SRIM code and MCNPX code. After optimization of the irradiation condition on the basis of the ⁸²Sr production yields calculated by MCNPX code simulation, the proton beam energy reached to the target can be calculated by SRIM code simulation.

REFERENCES

[1] L.F. Mausner, T. Trach and S.C. Srivastava, Production of ⁸²Sr by Proton Irradiation of RbCl, Appl. Radiat. Isop., Vol. 38, No. 3, pp. 181-184, 1987.

[2] K.E. Thomas, Strontium-82 Production at Los Alamos

National Laboratory, Appl. Rodiat. Isot. Vol. 38, No. 3, pp. 175-180, 1987.

[3] P.L. Horlock, J.C. Clark, I.W. Goodier, J. W. Barnes, G.E. Bentley, P.M. Grant, H.A. O'brien, The Preparation of a Rubidium-82 Radionuclide Generator, Journal of Radioanalytical Chemistry, Vol. 64, No. 1-2, pp. 257-265, 1981.

[4] Strontium-82 Radiochemical Strontium Chloride Solution, www.nordion.com.

[5] J. M. Fitzsimmons, D. G. Medvedev and L. F. Mausner, Specific activity and isotope abundances of strontium in purified strontium-82, J. Anal. At. Spectrom., Vol. 31, pp. 458–463, 2016.

[6] J.F. Ziegler, in: J.F. Ziegler, J.P. Biersack, U. Littmark (Eds.), The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985 (http://www.srim.org/).