Comparison of ENDF/B-VIII.0 and ENDF/B-VII.1 libraries with MCS code.

Hyunwook Kang^a, Hyunsuk Lee^b, Kiho Kim^b, Deokjung Lee^b, Hyun chul Lee^{a*}

^a Nuclear Engineering Division, School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, geumjeong-gu, Busan 46241, Korea

^bDepartment of Nuclear Engineering, Ulsan National Institute of Science and Technology

50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919,

1. Introduction

Recently, ENDF/B-VIII.0 library was released by Cross Section Evaluation Working Group (CSEWG). The ENDF library is used to calculate Monte Carlo codes. It is important to verify the cross-section library before performing Monte Carlo calculations.

This paper presents comparison of ENDF/B-VIII.0 library and the ENDF/B-VII.1 library using ICSBEP model, VERA benchmark, PMR model. This process is important for ensuring the reliability of the ENDF/B-VIII.0 library. MCS code was used to compare ENDF/B-VIII.0 library and ENDF/B-VII.1 library. Some of ICSBEP model, VERA benchmark model and PMR model were used for the calculation. The ENDF/B-VIII.0 library was generated using NJOY code.

2. Verification of ENDF/B-VIII.0 library

This section describes the newly released ENDF/B-VIII.0 and the MCS and NJOY codes used in this study. Also, the ICSBEP benchmark model used in calculation was described.

2.1 ENDF/B-VIII.0 library

ENDF/B-VIII.0 was released in early 2018, incorporating work from the US national and international nuclear science communities. This library has been published in the form of the ENDF/B-VI.0 format and a new generalized nuclear database structure. Unlike ENDF/B-VII.1, ENDF/B-VIII.0 had significant changes in the neutron response to major actinides and other nuclides that affect the simulation of nuclear criticality. The isotope ¹H, ¹⁶O, ⁵⁶Fe, ^{235,238}U, ²³⁹Pu reflected results of ENDF/B-VIII.0 in Collaborative International Evaluation Library Organization (CIELO). Neutron standards and thermal scattering libraries are included in ENDF/B-VIII.0. In the Table I, the neutron sublibrary has expanded 32% to contain 557 evaluations (see Table I.) [1].

Table I. Number of Nuclides Provided Each ENDF/B Library in Each Sublibrary [1].

Sublibrary	VIII.0	VII.1	VII.0	VI.8
Neutron	557	423	393	328
Thermal n- scattering	33	21	20	15
Proton	49	48	48	35

Deuteron	5	5	5	2
Triton	5	3	3	1
Helium3	3	2	2	1
Alpha	1	n/a	n/a	n/a
Photonuclear	163	163	163	n/a

2.2 MCS code

MCS code has been developed for the purpose of large scale reactor analysis with accelerated Monte Carlo simulation. MCS uses continuous energy crosssection libraries and detailed geometrical data to estimate neutronics design parameters of a nuclear reactor such as effective multiplication factor, neutron flux, and fission power [2].

2.3 NJOY code

NJOY code is a comprehensive computer code package for calculating continuous energy cross-section, multi-group cross-section from evaluated nuclear data. NJOY code generates libraries for variety of particle transport and analysis codes, using files evaluated for neutrons, photons, and charged particles [3].

2.4 Specification of the ICSBEP model

Some of the International Criticality Safety Benchmark Experimental Problem (ICSBEP) was selected for verification of each library. ICSBEP is one of the criticality benchmark. Figure 1 shows assembly of LMT007 case1, one of the various models used in the calculations. Figure 2 shows vertical cross-section view of rod. The specification of LMT007 case1 model are described in Table II.

Table II. Specification of LMT007 case1 model

A	
Parameter	Value
Fuel rod diameter. (cm)	0.7729
Fuel rod length. (cm)	30
Fuel density. (g/cm ³)	18.974
Bottom reflector. (cm)	21.59
Moderator density. (g/cm ³)	0.997771
Pin pitch (cm)	1.30
Number of rods	394
Total height (cm)	60.49
Top reflector height (cm)	8.90

Fig 1. LMT007 case1 assembly design

3. Numerical Results

Table III-X shows results of the ICSBEP model. The model used for calculation was selected from some of the ICSBEP model. The multiplication factor(k_{eff}) values of Table III-X shows that ENDF/B-VIII.0 values is less than ENDF/B-VII.1 value substantially. The deviations of the k_{eff} values are about 20 pcm. Table III-X shows the result of comparing ENDF/B-VIII.0 and ENDF/B-VII.1 using MCS code. In Table III-X, 500 inactive cycles and 2000 active cycles were used with a neutron history of 10000 per cycle. The temperature was assumed to be 300K.

In order to compare ENDF/B-VIII.0 library and ENDF/B-VII.1 library, other models were selected. Selected models are VERA benchmark model and PMR model. A material of fuel and cladding in VERA benchmark is uranium and zirconium. Table XI shows k_{eff} value of 2D pin-cell calculation. The deviations of the k_{eff} values are about 20 pcm. In Table XI, 20 inactive cycles and 100 active cycles were used with a neutron history of 50000 per cycle. The temperature was assumed to be 600K. Unlike the other models, the fuel type of PMR model is TRISO particle. Table XII shows k_{eff} values are about 26 pcm. In Table XII, 20 inactive cycles are about 26 pcm. In Table XII, 20 inactive the temperature was assumed to be 600K. Unlike the other models the fuel type of PMR model is TRISO particle. Table XII shows k_{eff} values are about 26 pcm. In Table XII, 20 inactive

cycles and 100 active cycles were used with a neutron history of 50000 per cycle. The temperature was assumed to be 900K.

ruble m. ken rubland m ECT oor model

Model	ENDF/B-	ENDF/B-	Diff
Niodel	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
Case01	1.00030	1.00075	-45
Case02	0.99972	1.00019	-47
Case03	0.99903	0.99971	-60
Case04	0.99944	1.00004	-60
Case05	0.99764	0.99831	-67
Case06	0.99960	1.00009	-49
Case07	0.99906	0.99938	-32
Case08	0.99790	0.99838	-48

Table IV. keff Results in LCT 008 Model

Madal	ENDF/B-	ENDF/B-	Diff
Model	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
Case01	1.00124	1.00245	-121
Case02	1.00182	1.00273	-91
Case03	1.00234	1.00300	-66
Case04	1.00141	1.00212	-71
Case05	1.00122	1.00200	-78
Case06	1.00117	1.00223	-106
Case07	1.00072	1.00141	-69
Case08	1.00018	1.00084	-66
Case09	1.00004	1.00141	-137
Case10	1.00119	1.00229	-110
Case11	1.00224	1.00286	-62
Case12	1.00140	1.00224	-84
Case13	1.00140	1.00224	-84
Case14	1.00192	1.00225	-33
Case15	1.00125	1.00206	-81
Case16	1.00149	1.00241	-91
Case17	1.00032	1.00124	-92

Table V. keff Results in LCT 017 Model

Model	ENDF/B-	ENDF/B-	Diff
name	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
Case01	1.00194	1.00267	-73
Case02	1.00158	1.00258	-100
Case03	1.00058	1.00114	-56
Case04	0.99855	0.99960	-105
Case05	0.99987	1.00098	-111
Case06	1.00041	1.00065	-24
Case07	1.00040	1.00125	-85
Case08	0.99922	0.99963	-41
Case09	0.99840	0.99878	-38
Case10	0.99878	0.99912	-34
Case11	0.99899	0.99937	-38
Case12	0.99891	0.99979	-88
Case13	0.99951	0.99995	-44

Transactions of the Korean Nuclear Society Autumn Meeting Yeosu, Korea, October 25-26, 2018

Case14	0.99981	1.00056	-75
Case15	0.99796	0.99818	-22
Case16	0.99906	0.99942	-36
Case17	1.00031	1.00117	-86
Case18	0.99900	0.99996	-96
Case19	0.99958	1.00016	-58
Case20	0.99858	0.99916	-58
Case21	0.99849	0.99967	-118
Case22	0.99781	0.99882	-101
Case23	1.00012	1.00095	-83
Case24	1.00099	1.00131	-32
Case25	0.99893	0.99972	-79
Case26	0.99637	0.99744	-107
Case27	0.99807	0.99969	-162
Case28	0.99966	0.99998	-32
Case29	0.99959	1.00114	-155

Table VI. keff Results in LCT 039 Model

Model	ENDF/B-	ENDF/B-	Diff
nome	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{\it eff}$	(pcm)
Case01	0.99701	0.99825	-124
Case02	0.99619	0.99707	-88
Case03	0.99518	0.99680	-162
Case04	0.99548	0.99700	-152
Case05	0.99697	0.99758	-61
Case06	0.99490	0.99560	-70
Case07	0.99503	0.99607	-104
Case08	0.99491	0.99609	-118
Case09	0.99441	0.99528	-87
Case10	0.99437	0.99545	-108
Case11	0.99464	0.99576	-112
Case12	0.99438	0.99555	-117
Case13	0.99408	0.99563	-155
Case14	0.99467	0.99586	-119
Case15	0.99488	0.99586	-98
Case16	0.99515	0.99657	-142
Case17	0.99467	0.99577	-110

Table '	VII.	k _{eff}	Results	in	LCT	050	Mode	ł

Model	ENDF/B-	ENDF/B-	Diff
name	VIII.0 (A)	VII.1 (B)	(A)-(B)
nume	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
Case01	0.99921	1.00078	-157
Case02	0.99915	1.00027	-112
Case03	0.99977	1.00095	-118
Case04	0.99935	1.00065	-130
Case05	1.00065	1.00191	-126
Case06	1.00045	1.00214	-169
Case07	1.00542	1.00655	-113
Case08	0.99776	0.99904	-128

	~~		
Model	ENDF/B-	ENDF/B-	Diff
nodel	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
Case01	1.00247	1.00346	99
Case02	1.00250	1.00295	45
Case03	1.00239	1.00314	75
Case04	1.00253	1.00356	103
Case05	1.00202	1.00310	108
Case06	1.00208	1.00269	61
Case07	1.00228	1.00268	40
Case08	1.00189	1.00258	69

Table IX. keff Results in LCT 065 Model

	Tuble Hill May Hebuilds in 201 000 Hilduer			
Model	ENDF/B-	ENDF/B-	Diff	
nome	VIII.0 (A)	VII.1 (B)	(A)-(B)	
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)	
Case 02	1.00329	1.00508	-179	
Case03	1.00242	1.00434	-192	
Case04	1.00240	1.00496	-256	
Case05	1.00327	1.00499	-172	
Case06	1.00376	1.00505	-129	
Case07	0.97706	0.97796	-90	
Case08	1.00372	1.00486	-114	
Case09	1.00281	1.00455	-174	
Case10	1.00245	1.00368	-123	
Case11	1.00273	1.00354	-81	
Case12	1.00237	1.00369	-132	
Case13	1.00199	1.00295	-96	
Case14	1.00335	1.00430	-95	
Case15	1.00300	1.00382	-82	
Case16	1.00256	1.00381	-125	
Case17	1.00227	1.00365	-138	

Table X. k_{eff} Results in LCT 090 Model

Madal	ENDF/B-	ENDF/B-	Diff
widdel	VIII.0 (A)	VII.1 (B)	(A)-(B)
name	$k_{e\!f\!f}$	$k_{\it eff}$	(pcm)
Case01	1.00251	1.00280	-29
Case02	1.00225	1.00305	-80
Case03	1.00239	1.00273	-34
Case04	1.00297	1.00373	-76
Case05	1.00245	1.00368	-123
Case06	1.00263	1.00323	-60
Case07	1.00193	1.00306	-113
Case08	1.00211	1.00315	-104
Case09	1.00243	1.00288	-45

Table XI. VERA Benchmark Model keff

Mr. 1.1	ENDF/B-	ENDF/B-	Diff
Model	VIII.0	VII.1	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
VERA	1 1 9 2 9 0	1 1 9 2 0 7	72
Benchmark	1.10500	1.16507	-75

ruble Mil. I wild wieder keff			
Model	ENDF/B-	ENDF/B-	Diff
nome	VIII.0	VII.1	(A)-(B)
name	$k_{e\!f\!f}$	$k_{e\!f\!f}$	(pcm)
PMR	1 25005	1 24917	110
Compact	1.23003	1.24017	110

Table XII. PMR Model k_{eff}

4. Conclusions

This paper presents comparison of ENDF/B-VIII.0 library and the ENDF/B-VII.1 library using ICSBEP model, VERA benchmark, PMR model.

Numerically, in the ICSBEP and VERA benchmark models, ENDF/B-VIII.0 showed lower k_{eff} value than ENDF/B-VII.1. The difference of two results is within statistical error. However, the results of PMR model showed that k_{eff} value was higher ENDF/B-VIII.0 than ENDF/B-VII.1.

REFERENCES

[1] D.A.Brown, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELOproject Cross Section, New Standards and Thermal Scattering Data, Nuclear Data Sheets, Vol.148, p.1-142, 2018

[2] J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemarire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy. 114, 2018, 495-509

[3] Macfarlane, Robert; Muir, Douglas W.; Boicourt, R.M; Kahler, III, Albert Comstock; Conlin, Jeremy Lloyd, "The NJOY Nuclear Data Processing System, version 2016", Technical Report, LANL, 2017.

[4] J. Briggs, ed., "International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)" Paris: Organization for Economic Co-operation and Developmentnuclear Energy Agency (OECD-NEA), 2016.