

23. 5. 2019.

A NEW METHOD TO VERIFY MCNP-CALCULATED THERMAL NEUTRON FLUENCE USING TLDS AND A CADMIUM SHEET

Ahmed I. Khalil, Sangmin Lee, Hyegang Chang, and Sung-Joon Ye* sye@snu.ac.kr

> Radiological Physics Laboratory Seoul National University

Introduction

- Materials and methods
- Neutron irradiation
- TLD Reading out
- Simulation and geometry
- Results and discussion

INTRODUCTION

- Thermoluminescence dosimeters are versatile, compact and widely used for mixed field neutron and photon dosimetry.
- Activation foils are normally used to evaluate thermal neutron fluence
- In BNCT, the neutron beam should ideally be mostly epithermal neutrons where the ratio of thermal to epithermal neutrons should be less than 0.05^[1]

INTRODUCTION

In this study, LiF based TLDs are used with a cadmium sheet to evaluate thermal neutron fluence

TLD-600 = ⁶LiF:Mg,Ti

(Neutron + Photon) sensitive

TLD-700 = ⁷LiF:Mg,Ti

Photon sensitive

Cross section of Li-6, Li-7, and cadmium.

Objective: To obtain thermal neutron fluence contribution in mixed photon and neutron fields

MATERIALS AND METHODS

- Prior to irradiation, new batches of TLD-600 and TLD-700 were prepared
 - 80 TLD-600 and 80 TLD-700 were annealed:
 - At 400°C for 1 hour, then
 - At 100°C for 2 hours

Electric oven used to anneal TLDs

MATERIALS AND METHODS

- Sets of TLD-600 chips and TLD-700 chips were grouped to be
 - A Directly exposed to the neutron beam
 - B Shielded in the front by a cadmium sheet
 - C Placed inside a folded cadmium pocket

Side view of the cadmium sheet

Backward view of the TLD setup with cadmium sheet in place

Side view schematic demonstrating the TLD positioning.

NEUTRON IRRADIATION

- POSTECH neutron irradiation room using Cf-252 neutron source:
 - 830 × 640 × 410 cm
 - 50 cm thick concrete walls
 - TLDs at 1m from source
 - 50 cm shadow cone moderator
 - TLDs were at 1m from the source
 - Irradiation was continued for 48 hours

Side view photograph of irradiation setup at POSTECH irradiation room

- Californium-252 neutron source:
 - Eckert & Ziegler 3036 cylindrical source
 - 480 µCi on 1.7.2018 (calibration date) (2.073E6 n/s)
 - 414 µCi on 23.1.2019 (irradiation date) (1.789E6 n/s)
- The gamma emission of daughter nuclides accumulated from fission are non-negligible.

Eckert & Ziegler 3036 cylindrical source

prompt photon and neutron emission multiplicity from bare Cf-252 source

TLD READING

- All TLDs were readout after irradiation using Harshaw 3500 TLD reader to obtain TLD glow curve
- The TLDs were labelled after irradiation.
- TLD glow curve for each group of TLDs was averaged,
 - A Region of interest was selected between channels 16 66
 - Five TLD readings that showed high deviation from the averaged reading were omitted.

Harshaw 3500 TLD reader

- Heating TLDs in the Harshaw[™] 3500 TLD reader yields glow curves corresponding to the amount of dose response the TLD has received.
- The TLD glow curve shows different peaks at different temperatures, the main peak between channels 16 to 66 was chosen as region of interest ROI
- The integrated area under the curve of the ROI is selected and analyzed

POST IRRADIATION MEASUREMENT

- Neutron dose rate was measured after Irradiatin g TLDs using a calibrated neutron dose rate met er.
- Ludlum Measurements® LB-6411 calibrated neutron dose rate meter
- Ambient dose rate equivalent H*(10) calibrated according to ICRP-60
- Dose rate readings averaged over several hours was <u>3.46 µSv/h</u>

Photograph of Neutron dose rate measurement device, *courtesy of POSTECH*

MCNP SIMULATION

- Irradiation room geometry was replicated using SimpleGeo
- Cf-252 source shield, holder, shadow cone, TLD holders were all included in the simulation
- Special cross section data treatment was used for hydrogen molecules bound in polyethylene
- A Cf-252 point source was simulated at the real coordinates of the source using Watt fission spectrum a=1.025, b=2.926
- F4 tally was used to obtain neutron flux and later ambient dose equivalent H*(10)
- F6 tally was used to obtain energy deposition in TLDs in MeV/gram
- Simulation continued until tally error < 0.05</p>

Neutron irradiation room as visualized using SimpleGeo

Actual Photograph of the neutron irradiation room

RESULTS AND DISCUSSION - EXPERIMENTAL

Neutron dose was obtained by subtracting TLD-700 from TLD-600 reading

-	Experimental				
Position	TLD-600 signal A.U.	TLD-700 signal A.U.	Neutron signal A.U.	Normalized ¹	
А	8.19	3.85	4.34	1	
В	5.36	3.13	2.23	0.514	
С	3.78	3.29	0.49	0.11	
Signal A.U.	Air – Cd (scatter)	2.11	Air - Folded Cd	3.85	

RESULTS AND DISCUSSION - SIMULATION

-	Simulation				
position	MeV/g/n/history	Normalized ¹	Thermal n/cm²/history	Normalized ¹	
А	3.56E-05	1	4.31E-07	1	
В	1.83E-05	0.514	2.01E-07	0.466	
С	3.19E-06	0.0896	2.32E-08	0.0538	
Thermal neutron fluence n/cm²/history	Air – Cd (scatter)	2.30E-7	Air - Folded Cd	4.08E-7	

RESULTS AND DISCUSSION - NEUTRON FLUENCE

Neutron dose was obtained by using :

DF4 dose modifier card in MCNP to convert neutron flux to ambient dose rate $H^*(10)$ in μ Sv/h according to ICRP-60 recommendations.

$$D_{H*(10)} = \int_{emin}^{emax} h_{*10} \times \Phi_{*10} \cdot dE$$

The resulting neutron dose rate was $3.585 \ \mu$ Sv/h which is with close agreement with the experimental value.

-	Simulation				
label	MeV/g/n/history	Normalized ¹	Thermal n/cm²/history	Normalized ¹	
Α	3.56E-05	1	4.31E-07	1	
В	1.83E-05	0.514	2.01E-07	0.466	
С	3.19E-06	0.0896	2.32E-08	0.0538	
Thermal neutron fluence n/cm²/history	Air – Cd (scatter)	2.30E-7	Air - Folded Cd	4.08E-7	

CONCLUSION

- The ratios of TLD response in positions A,B,C in experimental vs. simulated energy deposit matched to within < 3%.
- H*(10) was experimentally measured using calibrated LB 6411 neutron probe (3.46 µSv/h).
- Converting simulated neutron flux to neutron dose rate using flux-to-dose conversion coefficient (ICRP-60) yields a dose rate of $(3.585 \ \mu Sv/h)$. This is in close agreement with experimentally calibrated neutron measurement $(3.46 \ \mu Sv/h)$.
- We can conclude that this method is sufficient to evaluate thermal neutron fluence as alternative to the complicated activation foil method

Thank you for your attention.