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1. Introduction 
 

Various concepts have been proposed for ocean 
nuclear power plants with enhanced features [1-3]. The 
ocean nuclear reactor is characterized by the motion of 
the reactor system according to ocean environments. 
Thus, the thermal-hydraulic behavior must be 
investigated in the moving system. 

Many efforts have been made to develop system codes 
for ocean nuclear power plants [4-7]. A domestic recent 
study also demonstrated the MARS code capability to 
predict flows under dynamic conditions [8]. 

The purpose of this study is to extend the SPACE code 
capability into thermal-hydraulic analysis for ocean 
nuclear reactor. This paper reports recent developments. 

 
 

2. One-Dimensional Model 
 

2.1 Governing Equations 
 
It is well known that the governing equations for scalar 

properties remain unchanged under the change of frame. 
Thus, the forms of the two-fluid mass and energy 
equations are the same as those of existing equations. On 
the other hand, the two-fluid momentum equation is 
modified to account for fictitious forces. 
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where xR  is the pipe direction component of the linear 

acceleration and ω  is the rotation vector. 
 

2.2 Three-Dimensional Rotation Expression 
 

The intrinsic rotation approach with Tait-Bryan angles 
was employed in this work. In Fig. 1,  ,  , and   are 

the rotation angles measured in the rotating coordinates. 
ω  and ω  are  functions of  ,  , and  such that 
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Fig. 1. Intrinsic rotation with Tait-Bryan angles 
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where i , j , and k  signify the unit vectors in the 

absolute coordinates. We need to express ω  and ω  in 
terms of unit vectors in the moving coordinates because 
ω  and ω  in Eq. (1) are vectors measured in the moving 
coordinates. The vector conversion between the absolute 
and moving coordinates is not difficult.  
 
2.3 Thermal-Hydraulic and Component Models 

 
The code must consider the dynamic change of the 

channel orientation. Therefore, the code was modified to 
update the geometric information such as inclination 
angle, azimuthal angle, elevation, etc. In addition, the 
options for hydrodynamic models were set to vary with 
time depending the channel orientation.  

The hydrodynamic and heat transfer models must 
consider the effect of system oscillation. At this moment, 
they are not taken into consideration. The system 
inclination affects the separator performance [6]. The 
separator component will be improved in the future. 

 
 

3. Result 
 

2.1 Verification 
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Fig. 2. y-axis rotation of connected pipes 
 
Basic tests were performed to verify code 

modifications as intended. Figure 2 shows two connected 
pipes rotating about the y axis. The rotating speed is 

o(36 )y t  . Figures 3 ~ 6 show the variations of 

geometrical parameters of the two connected cells 
(C100-10 and C200-01). All parameters are predicted 
correctly. Figure 7 shows the dynamic change of the flow 
regime at cell C100-10 as the pipe rotates. Although not 
shown here, tests with rotations about x or z axis were 
also carried out. All geometrical parameters were 
correctly predicted. 
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Fig. 3. Variations of the inclination angles ( ) of the two 
connected cells(C100-10, C200-01) 
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Fig. 4. Variation of the azimuthal angles ( ) of the two 

connected cells(C100-10, C200-01) 
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Fig. 5. Variations of the x-distances of the two connected 
cells(C100-10, C200-01) 
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Fig. 6. Variations of the z-distances of the two connected 
cells(C100-10, C200-01) 
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Fig. 7. Variations of flow regime map at cell C100-10 

 
 

2.2 Rotating manometer 
 
A conceptual test with manometer was performed.  

Figure 8 depicts the manometer half filled with water. 
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Figures 9~12 show the variation of the collapsed water 
level in each pipe with time. In Figs. 11, the manometer 
is rotated to the extent that the left pipe becomes empty 
and the right pipe is completely filled with water. On the 
whole, it is shown in Figs. 9~12 that the amount of water 
in each pipe is reasonably predicted. 

 
 

 
Fig. 8. Manometer 

 

 

Fig. 9. Collapsed water levels when the manometer rotates 
clockwise by 10o for 10 s and stands still after 10 s. 

 

 

Fig. 10. Collapsed water levels when the manometer rotates 
clockwise by 30o for 30 s and stands still after 30 s. 

 

Fig. 11. Collapsed water levels when the manometer rotates 
clockwise by 60o for 60 s and stands still after 60 s. 

 

 

Fig. 12. Collapsed water levels when the manometer rotates 
clockwise by 90o for 60 s and stands still after 60 s. 

 
 

3. Conclusions 
 

The SPACE code has been improved to be equipped 
with simulation capability for ocean nuclear reactors. 
Basic tests showed that the geometrical parameters were 
correctly predicted as the pipes rotate. In addition, the 
flow motion was reasonably predicted in a rotating 
manometer. We are in the early development stage. 
Various conceptual and validation tests will be carried 
out. 
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