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1. Introduction 

 

Common Cause Failure (CCF) is a failure that 

significantly affects system reliability with redundant 

components. In general, Probabilistic Safety Assessment 

(PSA) considers the CCF using an alpha factor model. 

Several advantages of these parametric models are that it 

is easy to use and makes the estimation of the parameter 

easier [1][2]. 

These parametric models require the parameters to 

estimate the CCF probabilities based on the symmetry 

assumptions. Symmetry in estimating the CCF 

parameters means that the basic event probabilities of n 

failures are identical in a Common Cause Component 

Group (CCCG) consisting of n components. This 

assumption has an advantage in reducing the number of 

required parameters to estimate CCF probabilities. 

However, it is difficult to be used for the asymmetric 

conditions such as the case when components in a CCCG 

have different operation mode or different total failure 

probability due to degradation or partial dependency 

between specific components. The researches [2][3] 

have mentioned asymmetrical CCF such as the case that 

different operation mode or similar components in a 

CCCG and proposed the way to address this by adding 

the asymmetrical basic events into the existing fault tree 

or formulating the related equations approximately. In 

case of asymmetry in total failure probability due to 

degradation, the simple assumption that degradations do 

not affect CCFs have been suggested to consider an 

asymmetry in defendant failures [1]. 

In this paper, we attempted to address asymmetric 

CCF in terms of the joint probability distributions, not 

parametric approach. For this purpose the copula method 

that combines marginal distributions using their 

parameter to estimate joint failure probability was used. 

Copula is widely used to model the dependency between 

random variables in financial and reliability engineering 

[4][5]. This approach has advantages in estimating joint 

failure probability with different or asymmetric marginal 

distributions. In other words referring the technical 

words used in PSA, it is suitable for describing the 

components in a CCCG that have different total failure 

probabilities or partial dependency.  

In order to build a copula structure, the type of copula 

and its parameter should be determined. However, 

original failure data to fit copula distribution is not 

available and alpha factors are the only available data for 

dependent failure practically. Therefore this paper 

focused on the development of the copula structure using 

alpha factors based on typical copulas to address 

asymmetric CCF.  

 

2. Methods  

 

2.1 Common Cause Failure 

 

Figure 1 shows the fault tree of common cause basic 

events that have one-out-of-two success logic based on a 

CCF model. 

 

 

Fig.  1. Example of common cause basic events for 

CCCG 2 

Using the BPM and alpha factor model based on the 

symmetry assumption, each basic event probability (for 

a non-staggered testing strategy) in figure 1 can be 

obtained from Eq. (1), (2), (3), respectively. 

 

𝑄1
𝐴 = 𝑄1

𝐵 =  𝑄1 =
𝛼1

𝛼𝑇
𝑄𝑇                   (1) 

𝑄2
𝐴𝐵  =  𝑄2 = 2

𝛼2

𝛼𝑇
𝑄𝑇                        (2) 

𝑄𝑇 =  𝑄𝑇
𝐴 = 𝑄𝑇

𝐵  =  𝑄1 + 𝑄2                  (3) 

 

Where, 𝑄1
𝐴 is independent failure of component A and 

𝑄2
𝐴𝐵 is common cause failure of component A and B. 𝑄𝑇  

is total failure probability of an component and 𝛼𝑘  is 

alpha factor for k failures and 𝛼𝑇 is summation of 𝛼𝑘. As 

shown in Eq. (1), existing parametric CCF have been 

assumed to have same basic event probability for k 

failures. This assumption results in reducing parameters 

to be quantified.  

However, this symmetry assumption makes the 

estimation of dependent failure probability difficult 

when a specific component may be degraded due to harsh 

environment (i.e. different total failure probability) or the 

component, which have partial dependency with specific 

one in high-redundant system, is under asymmetric 

conditions. 
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2.2 Copula 

 

Copula developed by Sklar is a dependency structure 

between random variables, and it can model a 

multivariate joint distribution using marginal 

distributions and copula parameters. For a random 

variable  𝑥 , if their joint and marginal cumulative 

distribution is F(𝑥1, 𝑥2, … , 𝑥𝑘), F(𝑥1) = 𝑢1, respectively, 

then copula (C) can be written in Eq. (4).  

 

F(𝑥1, 𝑥2, … , 𝑥𝑘) =  C(F1(𝑥1), F2(𝑥2), … , 𝐹𝑘(𝑥𝑘))       (4) 

 

For example, the normal copula is a multivariate 

distribution of uniform random variable u as follows:  

 

C(𝑢1, 𝑢2, … , 𝑢𝑘) = F(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2), … 𝐹𝑘
−1(𝑢𝑘))     (5) 

 

In case of a multivariate normal distribution, it 

consists of normal marginal distribution and normal 

copula distribution with a copula parameter.  

Typical types of copula are normal and t-copula, 

which belong to the elliptical copula family. In 

Archimedean copula family, Frank copula, Gumbel 

copula and Clayton copula is widely used to model 

dependency because they need only a single parameter to 

build the copulas. Each copula needs a copula parameter. 

For example, Pearson’s correlation coefficient is a kind 

of copula parameter in the normal copula. In 

Archimedean copula, they need other types of correlation 

coefficients such as Kendall’s tau to evaluate the copula 

parameter (θ).  

Figure 2 shows the example of copula distribution at a 

specific copula parameter. As shown in figure 2, normal 

and Frank copula have symmetric distribution, while 

Gumbel and Clayton have strong dependency at the one 

side of distribution.  

 

 

Fig.  2 Examples of Copula distributions for random 

number u1, u2  

2.3 CCF modeling based on copula from alpha factor 

 

In order to construct a joint probability distribution 

using copula, we need information for marginal 

distribution, copula distribution and copula parameter. 

Marginal distribution can be assumed as the exponential 

distribution for running failure or the binomial 

distribution for demand failure. In this paper, we have 

assumed that the marginal is an exponential distribution 

with failure rate given in NUREG/CR-6928 [6]. 

Copula and copula parameter should be determined by 

fitting to failure data. In other words, dependent failure 

data are required, however, it is not available in practice. 

In addition, the plant or component specific CCF data are 

not easy to be obtained because it is a rare event. 

Therefore, the existing alpha factor given in 

NUREG/CR-5497 was the only available data for 

dependent failure in this study. 

This paper has dealt with typical 4 copulas introduced 

in section 1 and has developed the copula parameter 

obtained indirectly from alpha factors. The  research on 

the relationship between CCF and correlation 

coefficients has been carried out in terms of seismic 

correlation studies [7]. In this study, system unreliability 

from Eq. (6) becomes joint failure probability in Eq. (7). 

 

𝑃𝑠𝑦𝑠
𝛼 = 𝑄1

2 + 𝑄2 = (
𝛼1

𝛼𝑇
𝑄𝑇)2 + 2

𝛼2

𝛼𝑇
𝑄𝑇          (6) 

 

In figure 1, the system unreliability (𝑃𝑠𝑦𝑠
𝛼 ) in one-out-

of-two success logic can be calculated in Eq. (6) using 

the given total failure probability and alpha factor under 

symmetric condition. 

 

 𝑃𝑠𝑦𝑠
𝜃 = F(𝑥1, 𝑥2) = 𝑃(𝑥1 < 𝑇, 𝑥2 < 𝑇)        (7) 

 

In terms of joint probability distribution, joint failure 

probability based on copula parameter (θ), 𝑃𝑠𝑦𝑠
𝜃  can be 

evaluated using Eq. (7).  

Thus, if the joint failure probability, 𝑃𝑠𝑦𝑠
𝜃  at certain 

copula and parameter equals to 𝑃𝑠𝑦𝑠
𝛼  from Eq. (6), then 

this copula parameter can be used to construct joint the 

probability distribution under asymmetric conditions.   

 

2.4 Asymmetric CCF  

 

In this section, asymmetric problems where the total 

probability of failure is different (𝑄𝑇
𝐴 ≠ 𝑄𝑇

𝐵) have been 

addressed. It should be noted that the copula parameter 

calculated from Eq. (6) and (7) does not change even if 

total failure rates become changed. This assumption was 

driven or can be shared from the fact that the alpha factor 

does not change even if the total probability of failure 

changes. 

Copula parameter from Eq. (6) and (7) are used to 

establish joint distribution under asymmetric conditions. 

Eq. (8), (9), (10) represents the failure probability of 

component A, B and system unreliability without a 

symmetry assumption. 
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𝑃(𝐴 < 𝑇) =  𝑄𝑇
𝐴 =  𝑄1

𝐴 + 𝑄2
𝐴𝐵                (8) 

𝑃(𝐵 < 𝑇) =  𝑄𝑇
𝐵 =  𝑄1

𝐵 + 𝑄2
𝐴𝐵                 (9) 

𝑃𝑠𝑦𝑠
𝑎𝑠𝑦

= 𝑃(𝐴 < 𝑇, 𝐵 < 𝑇) = 𝑄1
𝐴𝑄1

𝐵 + 𝑄2
𝐴𝐵       (10) 

 

The left side of Eq. (8), (9), (10) can be obtained from 

the joint distribution using the copula parameter. When 

CCCG = n, 2𝑛 − 1 system of equations are generated. 

Figure 3 shows the procedure for constructing the joint 

distribution using copula parameter from alpha factors 

and evaluating asymmetric CCFs.  

 

 

Fig.  3. Procedures for estimating joint failure probability 

of asymmetric CCF 

3. Results 

 

The asymmetric condition that failure rate of the one 

component increase due to degradation was assumed to 

study how copula works effectively. Table I includes 

failure rate of Emergency Diesel Generator (EDG) and 

alpha factor for CCCG=2 [6][8]. In addition, 𝑃𝑠𝑦𝑠
𝛼  in Eq. 

(6) was calculated. 

 

Table I: EDG failure rate and alpha factor 

 Reliability data 

Total failure rate (𝛌) 8.35E-04/hr 

Mission Time (T) 24hrs 

Alpha 

Factor 

𝜶𝟏 0.984 

𝜶𝟐 0.0157 

𝑷𝒔𝒚𝒔
𝜶  (from Eq.6) 9.83E-04 

 

As mentioned in section 2.3 and 2.4, copula parameter 

( θ) , which meets  𝑃𝑠𝑦𝑠
𝛼 =  𝑃𝑠𝑦𝑠

𝜃 , can be found by 

optimization method as shown in figure 3. Table II shows 

each copula parameter depending on the type of copula. 

 

 

 

 

 

Table II: Copula parameters (θ) that meet 𝑃𝑠𝑦𝑠
𝛼 =  𝑃𝑠𝑦𝑠

𝜃   

Copula type Copula parameter 

Normal copula 0.1778 

Frank copula 2.3691 

Gumbel copula 1.2181 

Clayton copula 0.0772 

 

Figure 4 shows how 𝑃𝑠𝑦𝑠
𝑎𝑠𝑦

changes as the total failure 

probability of the component B (𝑄𝑇
𝐵) increase using the 

copula parameter derived from Table 2. System 

unreliability (alpha factor in figure 4) that counts the 

increase of failure rate of component both A and B under 

symmetric condition was calculated to compare results 

from asymmetric condition using copula.  

On the other hand, the joint failure probability (𝑃𝑠𝑦𝑠
𝑎𝑠𝑦

) 

was calculated depending on copula under asymmetric 

condition that the failure rate of component A was fixed 

(8.35E-04/hr) and failure rate of component B increased 

by 1.0E-04/hr. 

 

 

Fig.  4.  𝑷𝒔𝒚𝒔
𝒂𝒔𝒚

 depending on copulas and failure rate 

As shown in figure 4, the existing alpha factor model 

does not consider the difference in the failure rate of the 

components. Thus, all the components have an increased 

failure rate. This results in significantly conservative 

system unreliability. On the other hand, copula considers 

the difference in the failure rate of the components under 

asymmetric condition. 𝑃𝑠𝑦𝑠
𝑎𝑠𝑦

 is located between the black 

(considering the increased failure of both components) 

and the red line (without considering the increased 

failures) in figure 4. 

 

4. Conclusions 

 

In this paper, the asymmetric CCF where the total 

failure probability is different has been described in 

terms of joint probability distributions. It turned out that 

copula is suitable for estimating joint failure probability 

under asymmetric conditions.  

However, the copula approach mentioned in this paper 

has only one parameter to construct joint probability 

distribution. In other words, it is not proper in highly 
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redundant systems to express all combinations of 

dependency between components by only a single 

parameter. Therefore, vine copula [9] can be used to 

consider partial dependency as future works.  

In practice, this approach may not be valid in a typical 

PSA, but it can be applicable to specific reliability 

analysis problems, which is on-going through the study. 
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