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1. Introduction 
 

When performing Probabilistic Safety Assessment 
(PSA) of Nuclear Power Plants (NPPs), Common Cause 
Failure (CCF) is analysed on the basis of field test and 
data, and the CCF contains information about the 
correlation between each component. CCF modeling is 
necessary for cases where available data is insufficient. 
In this situation, simultaneous failure of the component 
can be explained by using the joint probability 
distribution [1]. The method of modeling the 
simultaneous failure due to a seismic event using the 
joint probability distribution utilizes a Beta Factor Model 
(BFM) [2]. However, if the above method is applied to 
the CCF modeling, there arises a problem that the joint 
probability can’t be completely decomposed into basic 
parameter. Therefore, in this paper, we propose a new 
approximation method for applying the joint probability 
distribution to the CCF modeling. This method has the 
advantage of clearly separating the basic parameter from 
joint probability and improving the accuracy of the 
approximation. These points are presented in the results 
section as an example of two components. 

 
2. Methods 

 
In order to distinguish between the previously 

proposed method and the method presented in this paper, 
we denote ‘Method 1’ and ‘Method 2’, respectively. 
 
2.1 Method 1 
 

This method contains the procedure to obtain the CCF 
basic parameters from the joint probability distributions 
that explain the seismic correlations, in order to reflect 
the simultaneous failures by the seismic events to the 
fault trees [2]. In this section, we describe the process of 
decomposing the joint probability and expressing it as a 
basic parameter. 

If there are two components A and B, the joint 
probability can be expressed by a Venn diagram as 
shown in Figure 1. 
 

  
 Fig. 1. The Venn diagram of the joint probability 
 

In this case, 𝑃𝑃𝐴𝐴 is a probability that a failure occurs in 
the component A (irrespective of whether the component 
B is fail), 𝑃𝑃𝐵𝐵 is a probability that a failure occurs in the 
component B (irrespective of whether the component A 
is fail), 𝑃𝑃𝐴𝐴𝐴𝐴  is the probability that simultaneous failures 
occur in the components A and B, 𝑄𝑄𝐴𝐴0 is the probability 
that a failure occurs in the component A while 
component B is in a normal state, 𝑄𝑄𝐵𝐵0 is the probability 
that a failure occurs in the component B while 
component A is in a normal state, 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 is the probability 
that simultaneous failures occur in the components A and 
B due to independent causes, 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 means the probability 
of simultaneous failure in the components A and B due 
to a common cause. 

Figure 1 is expressed as the following Eq. (1), (2), and 
(3). 

 
𝑃𝑃𝐴𝐴 = 𝑄𝑄𝐴𝐴 + 𝑄𝑄𝐴𝐴𝐴𝐴                             (1) 

𝑃𝑃𝐵𝐵 = 𝑄𝑄𝐵𝐵 + 𝑄𝑄𝐴𝐴𝐴𝐴                             (2) 

𝑃𝑃𝐴𝐴𝐴𝐴 = 𝑄𝑄𝐴𝐴𝑄𝑄𝐵𝐵 + 𝑄𝑄𝐴𝐴𝐴𝐴                         (3) 

 
According to the definition of each term, 𝑄𝑄𝐴𝐴 , the 

shaded part of Figure 1, is the sum of the probabilities of 
component A failure and the simultaneous failure of 
components A and B due to the independent cause, and 
it is 𝑄𝑄𝐴𝐴 = 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 . In addition, we can recognize that 
𝑄𝑄𝐴𝐴𝐴𝐴  is the probability of simultaneous failure in the 
components A and B due to a common cause, that is, 
𝑄𝑄𝐴𝐴𝐴𝐴 = 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 . 

Therefore, we can express Eq. (1), (2) and (3) as Eq. 
(4), (5), and (6) 
 

𝑃𝑃𝐴𝐴 = (𝑄𝑄𝐴𝐴) + (𝑄𝑄𝐴𝐴𝐴𝐴) = �𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼� + �𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶�   (4) 

𝑃𝑃𝐵𝐵 = (𝑄𝑄𝐵𝐵) + (𝑄𝑄𝐴𝐴𝐴𝐴) = �𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼� + �𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶�   (5) 

    𝑃𝑃𝐴𝐴𝐴𝐴 = (𝑄𝑄𝐴𝐴𝑄𝑄𝐵𝐵) + (𝑄𝑄𝐴𝐴𝐴𝐴) 

= ��𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼��𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼�� + �𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶�     (6) 
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The left hands of Eq. (1), (2), and (3) are constants 
calculated through the integration of joint probability. 
The 𝑄𝑄𝐴𝐴, 𝑄𝑄𝐵𝐵, and 𝑄𝑄𝐴𝐴𝐴𝐴  are obtained from the solutions of 
nonlinear simultaneous equations with three unknowns 
and three equations. 

In the Eq. (4), (5), and (6), the nonlinear simultaneous 
equations with four unknowns and three equations are 
established, and 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 , 𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 , 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  can be 
obtained as a solution. In other words, to separate the 
𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼, it is necessary to have additional equations. 

 
2.2 Method 2 
 

In order to apply the joint probability distribution to 
the CCF, it is necessary to separate the cause of the 
simultaneous failure of the components A and B into 
whether the cause is an independent cause or a common 
cause. In the case of 𝜌𝜌 = 0 , there exists only the 
independent cause. In the case of 𝜌𝜌 = 1 , only the 
common cause exists. However, since the exact ratio of 
these two causes can’t be estimated in the range of 0 <
𝜌𝜌 < 1 , we assume that the terms expressing the 
simultaneous failure of components A and B are 
variables that vary according to the correlation 
coefficient rather than the fixed value. Therefore, when a 
simultaneous failure occurs in the components A and B, 
the variables representing the ratio of the causes are 
approximation value. 

In the case of Method 2, we added a formula 
expressing the simultaneous failure of the component 
due to the independent cause in view of the above 
situation. This equation utilizes the correlation 
coefficient, which is the input value of the integral 
calculation, as a kind of weight, and it can express a 
situation where the simultaneous failure rate by the 
independent cause decreases as the correlation 
coefficient increases. 

In Figure 1, 𝑄𝑄𝐴𝐴 is decomposed into 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼, and 
𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 is expressed as 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝜌𝜌), and these mean Eq. 
(7), (8), (9), (10). 
 

𝑃𝑃𝐴𝐴 = 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶                     (7) 

𝑃𝑃𝐵𝐵 = 𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶                    (8) 

𝑃𝑃𝐴𝐴𝐴𝐴 = 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶                           (9) 

𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵 =  
𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼

1 − 𝜌𝜌
   ∵ 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝜌𝜌)    (10) 

 
The 𝜌𝜌  is a correlation coefficient, and Eq. (1) 

corresponds to Eq. (7), and Eq. (2) corresponds to Eq. (8). 
There are four unknowns, four equations, and four 

solutions are drawn denoted 𝑄𝑄𝐴𝐴0 , 𝑄𝑄𝐵𝐵0 , 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 , 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 , 
since 𝑄𝑄𝐴𝐴 and 𝑄𝑄𝐵𝐵 of the Method 1 can be decomposed to 
𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 and 𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼. Eq. (10) is an approximate 
expression of the situation where there is only an 
independent cause when 𝜌𝜌 = 0 and only common cause 
when 𝜌𝜌 = 1. 

2.3 Discussions on Equation (10)  
 
In Section 2.3, we explain in more detail the reason why 

we define it as 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝜌𝜌). 
i) According to the definition of correlation coefficient, 

if 𝜌𝜌 = 0, there is no 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 , and if 𝜌𝜌 = 1, 𝑄𝑄𝐴𝐴0 and 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 
do not exist. This is shown in Figure 2. 

 

 
Fig. 2. The hypothetic ratio of 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼/𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 
 

Assuming that 𝑃𝑃𝐴𝐴 = 𝑃𝑃𝐵𝐵, the components A and B are 
independent events, 𝑃𝑃𝐴𝐴𝐴𝐴 = 𝑃𝑃𝐴𝐴 ∗ 𝑃𝑃𝐵𝐵 = 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼  if 𝜌𝜌 = 0 
according to Eq. (9). In addition, 𝑃𝑃𝐴𝐴 = 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  if 𝜌𝜌 = 1 
according to Eq. (7). In the boundary of such a 
correlation coefficient, independent cause and common 
cause can be calculated. However, it is not possible to 
know what nonlinearity ratio of 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼/𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶   has in the 
range between 𝜌𝜌 = 0 and 𝜌𝜌 = 1. 

ii) If we assume that 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵  and there is no 
weight, then irrespective of the correlation coefficient,  
𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼  will be a constant and only 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  will change 
according to the integral of Eq. (9). This phenomenon is 
in violation of the definition for the correlation 
coefficient, so that in the range of 0 < ρ < 1, the ratio of 
𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼/𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  is unknown without an exact solution, so 
proper approximation is necessary. Thus, by the 
condition that the 𝜌𝜌  increases, 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼  decrease, and  
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 1 , we assume that the first-order linear 
relationship, such as Eq. (10). 

On the contrary, we can approximate the case of the 
𝜌𝜌 = 1  such as 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 =  𝜌𝜌𝑃𝑃𝐴𝐴 = 𝜌𝜌 �𝑃𝑃𝐴𝐴+𝑃𝑃𝐵𝐵

2
� , where the 

𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼/𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 ratio of the two ways is different. Therefore, 
when both of 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝜌𝜌)  and 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 =
𝜌𝜌 �𝑃𝑃𝐴𝐴+𝑃𝑃𝐵𝐵

2
� are applied, we can’t obtain the solution. If a 

weight is applied to 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 , the value of 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  is 
overestimated in the range of high correlation coefficient. 
So, we choose the assumption 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵(1 − 𝜌𝜌). 
 

3. Results 
 

In this paper, the failure is judged based on the normal 
distribution where the mean is 0 and the standard 
deviation is 1. In addition, Monte Carlo integration and 
nonlinear simultaneous equations were solved using 
MASS and rootSolve packages of R programming code. 
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𝑓𝑓𝐴𝐴,𝐵𝐵(𝑎𝑎, 𝑏𝑏)

=
1

2𝜋𝜋𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵�1 − 𝜌𝜌𝐴𝐴𝐴𝐴2
exp � 

−1
2(1 − 𝜌𝜌𝐴𝐴𝐴𝐴2) ��

𝐴𝐴 − 𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

�
2

− 2𝜌𝜌𝐴𝐴𝐴𝐴 �
𝐴𝐴 − 𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

� �
𝐵𝐵 − 𝜇𝜇𝐵𝐵
𝜎𝜎𝐵𝐵

� + �
𝐵𝐵 − 𝜇𝜇𝐵𝐵
𝜎𝜎𝐵𝐵

�
2

��     (11) 

 
The ρAB means Pearson’s product moment correlation 

between A and B. The joint probability density function 
of the bivariate normal distribution can be expressed by 
a general formula such as Eq. (8). According to the 
definitions of 𝑃𝑃𝐴𝐴, 𝑃𝑃𝐵𝐵, 𝑃𝑃𝐴𝐴𝐴𝐴 , the integration interval of the 
joint probability applied in this paper is as shown in 
Table I, and the corresponding interval means a 
component failure. 
 

Table I. The integration interval of joint probability 

Interval 
Component A Component B 

Min. Max. Min. Max. 

𝑃𝑃𝐴𝐴 −∞ 0 −∞ +∞ 

𝑃𝑃𝐵𝐵 −∞ +∞ −∞ 0 

𝑃𝑃𝐴𝐴𝐴𝐴  −∞ 0 −∞ 0 
 
3.1 The results of Method 2 
 

Figure 3 is a graph of the Method 2, which calculates 
the values of the 𝑄𝑄𝐴𝐴0 , 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 , 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶  according to the 
correlation coefficient. In this paper, we can easily 
calculate as (12), (13), and (14) for the two symmetrical 
components. 

 
𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 = 𝑃𝑃𝐴𝐴2(1 − 𝜌𝜌)                       (12) 

𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 = 𝑃𝑃𝐴𝐴𝐴𝐴 − 𝑃𝑃𝐴𝐴2(1 − 𝜌𝜌)               (13) 
𝑄𝑄𝐴𝐴0 = 𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐴𝐴𝐴𝐴                            (14) 

 
If 𝜌𝜌 = 0 and 1, it can be regarded as an exact solution, 

but it can not be obtained at 0 < 𝜌𝜌 < 1. Since weights 
are given by using correlation coefficient, 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼  and 
𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶 show a linear trend. 
 

 
Fig. 3. Calculated basic parameter by Method 2 
 
 
 
 

3.2 The comparison of Method 1 and Method 2 
 

In this paper, we compared the approximate results of 
Methods 1 and 2 through Eq. (15) expressing a mutually 
exclusive Venn diagrams. The left hand of Eq. (15) is 
calculated differently according to the joint probability 
decomposition way of Method 1 and Method 2, and the 
right hand is a value calculated through integration. 

 
 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)        (15) 

 
In the above equation, 𝑄𝑄𝐴𝐴 = 𝑄𝑄𝐵𝐵 is defined by symmetry 

between the components, and 𝑃𝑃(𝐴𝐴) = 𝑃𝑃𝐴𝐴 , 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) =
𝑃𝑃𝐴𝐴𝐴𝐴  are applied. 

In the case of Method 1, the approximate value of the 
left hand is obtained by Eq. (16), because it is impossible 
to distinguish whether the cause of the simultaneous 
failure is due to the independent cause or common cause. 

 
 𝑃𝑃𝑀𝑀1(𝐴𝐴 ∪ 𝐵𝐵) = 𝑄𝑄𝐴𝐴 + 𝑄𝑄𝐵𝐵 + 𝑄𝑄𝐴𝐴𝐴𝐴               (16) 

 
In the case of Method 2, the cause of the simultaneous 

failure is clearly distinguished. So, Eq. (17) is used. 
 

𝑃𝑃𝑀𝑀2(𝐴𝐴 ∪ 𝐵𝐵) = 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶    (17) 
 

Here, P𝑀𝑀1 means Method 1 and P𝑀𝑀2 means Method 2. 
 

 
Fig. 4. The relative error of each method 

 
Figure 4 is a graph showing the relative error by 

comparing the values of Eq. (16) and (17) on the left 
hand of Eq. (15) with the integral value of the right hand. 
In Method 1, the difference between the left hand and the 
right hand is large. This is because the left hand value is 
overestimated due to the limitation that 𝑄𝑄𝐴𝐴  can not be 
divided into 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼. In other words, the left hand of 
Method 1 is the result of the duplicate calculation of the 
probability of 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 as in Eq. (18). 

 
𝑃𝑃𝑀𝑀1(𝐴𝐴 ∪ 𝐵𝐵) = (𝑄𝑄𝐴𝐴) + (𝑄𝑄𝐵𝐵) + (𝑄𝑄𝐴𝐴𝐴𝐴) 

= �𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼� + �𝑄𝑄𝐵𝐵0 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼� + �𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶� 
= 𝑄𝑄𝐴𝐴0 + 𝑄𝑄𝐵𝐵0 + 2 ∗ 𝑄𝑄𝐴𝐴𝐴𝐴𝐼𝐼 + 𝑄𝑄𝐴𝐴𝐴𝐴𝐶𝐶         (18) 

 
The models described in equations (1), (2), and (3) are 

referred to in the report on CCF modeling guidelines as 
'Approximate Formulate-Basic Parameter Model' [3]. 
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The reason for expressing ‘Approximation’ is estimated 
that the simultaneous failure is classified as an 
independent cause or a common cause under the expert 
judgment, such as impact vector. The method presented 
in this paper is an attempt to distinguish between 
independent causes and common causes using 𝜌𝜌 itself, 
and emphasizes that 𝜌𝜌  can explain information about 
simultaneous failures. However, it is still necessary to 
study whether the independent cause and the common 
cause can be separated through some function of 𝜌𝜌. 
 

4. Conclusion 
 

In this paper, we have proposed a joint probability 
decomposition method which can be utilized for the CCF 
modeling by using joint probability distribution, and the 
points of this method are explained. This method can 
completely decompose joint probability into basic 
parameters and can be used for CCF modeling when field 
data is insufficient. In order to apply this method to three 
or more components, 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴 , which can express the 
correlation between at least three variables in a 
comprehensive manner, is required. To generalize this 
approximation method, it is necessary to study how to 
make the simultaneous equations with high order.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This topic is an ongoing research, and methodology and 
related source code will be released through future 
papers. 
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