

Preliminary Analysis of Transport and Storage Cask under 9 m Side Drop Condition

Hyun-Gon Kim, Dong-Hyun Kim, Tae-Jin Kim and Yoon-Suk Chang Department of Nuclear Engineering, Kyung Hee University

Introduction

- Integrity of transport and storage cask should be maintained under 9 m drop accident according to the Nuclear Safety and Security Commission regulation
- **9m side drop analysis** was conducted by using commercial software ANSYS
- Maximum primary membrane stress intensity (Pm) and primary bending stress intensity (P_b) were examined
- **Critical locations** of each component were determined
- **Stress intensity** distributions of the cask and fuel assembly were depicted

Analysis Model & Conditions

Transport and storage cask model

Analysis Results

Stress analysis

Components	Stress classification	Maximum stress intensity (MPa)	Allowable stress intensity (MPa)
Cask body	Pm	86	338
	$P_m + P_b$	216	483
Canister body	Pm	90	247
	$P_m + P_b$	130	371
Disc	Pm	45	428
	$P_m + P_b$	232	551
	Л	10	200

i dei assembly	^I m	72	205
(Dummy)	$P_m + P_b$	87	413

Unit : MPa 191.76 Max 170.51 149.26 128.01 106.75 85.502 64.25

Energy balance

- Number of elements : 634,638
- 5×10^6 (f) A31 06 $3 \mathrm{x10}^{6}$ -O- internal energy -O- kinetic energy -O- total energy $2 \mathrm{x10}^{6}$ $1 \mathrm{x} 10^{6}$ 0.000 0.005 0.015 0.020 0.025
- Collision velocity : 13.29 m/s
- Frictional coefficient : 0.2 \bullet
- Z-axis symmetry

- ▲ Strain intensity time history of fuel ▲ Strain intensity time history of cask assembly body
- Point A is a position where fuel assembly shows maximum stress intensity
- Maximum stress intensity of the fuel assembly was 191 MPa at 0.0108 s
- Internal and kinetic energies were exchanged each other
- Total energy was maintained constantly

Conclusions

- $\frac{1}{2}$ FE model of transport and storage cask was constructed as full scale
- Maximum P_m and $P_m + P_b$ of each component were lower than corresponding allowable stress intensity values
- Parametric FE analysis will be conducted considering detailed model of fuel assembly