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1. Introduction 

 
Transuranic element (TRU) and uranium can be 

group recovered from spent fuel using pyroprocessing. 

Since most of the pyroprocessing process takes place 

inside hot cell, which has only limited transfer ports, the 

nuclear material measurement at the transfer port and 

surveillance in the hot cell can be very important to 

detect the nuclear material diversion in the 

pypoprocessing facility. However, it is very difficult to 

detect the diversion using the surveillance video in real 

time, since the people’s attentiveness drops quickly. 

Also, since the size of surveillance video data is too 

large, large human and computer resource are required 

to store, transport, and analyze the data. 

Recently deep learning has been developed very 

quickly and it has shown remarkable performance in 

many fields. Especially the deep learning is applied to 

the automatic anomaly detection using surveillance 

video. Here, the anomaly is defined as something that 

deviates from normal, or unexpected. And this approach 

has the possibility to be applied to the automatic nuclear 

material diversion detection using surveillance video. 

In the present work, we produce the virtual 

surveillance video data of the pyroprocessing facility in 

normal and abnormal operation mode; diversion, and a 

deep learning model is develop to detect the abnormal 

operation automatically.  

 

2. Methods and Results 

 

2.1 Virtual Surveillance Video Data 

 

Since it is very difficult to obtain enough surveillance 

video data inside the pyroprocessing hot cell, virtual 

video data were produced. The model facility is electro 

recovery cell (ER cell) of pyroprocessing facility.  

The virtual video data were produced with WITNESS 

Visionary Render (WITNESS VR). The process 

instruments inside the hot cell model were reduced 

metal storage, U&UCl3 storage, Electro Recovery (ER) 

instrument, sample storage, U ingot casting furnace, 

Liquid Cadmium Cathode (LCC) crucible storage, 

Trans Uranic ingot casting furnace (TICF), salt purifier, 

waste storage, U ingot storage, and TRU ingot storage. 

Two process lines with equal instrument arrangement 

were in the ER cell. A small crane transferred the 

process material in the ER cell. A surveillance camera 

was installed obliquely near the ER instrument. Figure 1 

is an image taken by the surveillance camera. 

 

 
Fig. 1. Image taken with surveillance camera in the virtual ER 

cell 

 

One campaign was composed of 2 times U recovery, 

2 times U/TRU recovery, 2 times TRU Draw Down 

(DD), 2 times Rare Earth (RE) DD. Two process lines 

proceeded independently. The start time difference 

between the two process lines was changed to make 

various normal surveillance video data. Also the process 

time and the process material position were slightly 

changed. 

Three type of abnormal surveillance video data were 

produced; large crane movement, diversion in the 

sample storage, and diversion of U/TRU product at ER 

vessel or TICF. All the abnormal data were not included 

to the normal data. 

 

2.2 AutoEncoder Model 

 

Autoencoder is one of the deep learning model. In the 

autoencoder, the input layer is compressed into short 

code, and then the shot code is decompressed into 

output, which is almost identical to the original input 

layer. After training the autoencoder only with the 

normal data, the trained autoencoder can produce the 

output similar to the original input if the input is close to 

the normal data. However, if the input is very different 

from the normal data; anomaly, the trained autoencoder 

cannot produce the output similar to the original input. 

Based on this characteristics of the autoencoder, the 

anomaly; diversion can be detected only training with 

the normal data. 

An autoencoder model was developed and trained 

using the normal data of the virtual video data in 

pyroprocessing cell. Ten sequence surveillance images 

were used simultaneously for the training. 

Figure 2 is one of detection result; the diversion in 

the sampling storage. 
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Fig. 2. Loss for the virtual camera data of diversion in the 

sampling storge 

 

In figure 2, loss is the sum of difference between the 

input pixel data and the output pixel data. If the 

autoencoder reproduces the input well, the loss is small, 

and if the autoencoder cannot reproduce the input, the 

loss gets larger. The points of large loss in the figure 2 

matches with the diversion time in the video data.  

 

3. Conclusions 

 

Surveillance can play more important role in the 

detection of nuclear material diversion if the diversion 

can be detected automatically with the surveillance 

without tedious analysis after a certain period of time. 

Deep learning technique, which shows amazing 

performance, has a potential to be combined with 

surveillance to detect the diversion in real time. In the 

present work, we develop an autoencoder model, and 

the model can detect the diversion for the virtual 

pyroprocessing surveillance camera video image. Our 

work shows the possibility that the automatic 

surveillance can be applied to help the diversion 

detection more effectively. 
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