
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

Software Reliability Growth Model for FPGA-based Safety Critical Software System

Satrio Pradana, Jaecheon Jung

Department of Nuclear Power Plant Engineering

KEPCO International Nuclear Graduate School, Ulsan, South Korea 45014
*Corresponding author: jcjung@kings.ac.kr

1. Introduction

In the NPP design, FPGA technology is mainly

applied for safety critical I&C systems such as the

Reactor Protection System (RPS). Recently The FPGA

technology is more and more extensively applied both

for the new NPP I&C system design and for updating

the obsolete systems of operating plants especially the

safety system. The role of FPGA based systems has

become very significant; therefore, the reliability

evaluation of the FPGA based systems has drawn the

attention of researchers [1].

As digital system are continuously being

introduce into nuclear power plants, the needs of

reliability analysis for digital system is increasing. Kang

and Sung [2] identified (1) a piece of software’s

reliability, (2) common-cause failures (CCFs), and (3)

fault coverage as the three most critical factors during

the reliability analysis of digital systems. For a reliability

estimation of the safety-critical software (the software

that is used in safety-critical digital systems), the FPGA

based need an approach to estimate the reliability and

predicting the failure of software.

In this work, an attempt is made to analyze the

reliability of FPGA based system considering the

software reliability growth model (SRGM) methodology

– as the NRC Technical reference NUREG/CR-6101

reports and IEEE Std. 1633 that the SRGM is one of the

possible methodologies to model the instrumentation

and control system [3][4].

2. Methods

Several steps have to be taken in order to

obtain failure data and analyze the reliability. Plant

Protection System (PPS) are one of safety critical safety

system in Nuclear Power Plant. It has a function to trip

the reactor through bistable logic controller and generate

trip signals based on the measurement channel value

exceeding a setpoint then transmit the signals to the

Coincidence Processor (CP) located in four redundant

channels. PPS receives sixteen (16) signals indicating

safety-related plant conditions; fourteen (14) analog

signals and two (2) digital signals. Besides the sixteen

signals, manual trip signals by operator are provided. In

this work, we only focus on Low Pressurizer Pressure

Trip (LPPT).

2.1 Test Case

Safety critical software applications often

require proof that they have been thoroughly tested.

Hence, programmers and testers are expected to write

good test cases [5] which can verify the behavior of the

entire system. However, in real life applications,

exhaustive testing is impractical as the input domain

could be extremely large or infinite. Thus, the main

challenge is to demonstrate the adequacy of testing

effectively.

Figure 1. Vivado simulation for PPS LPPT

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

According to IEEE 1633-2016, Recommended

Practice on Software Reliability, test cases from black

box testing can be used as operational profiles to

support test selection both for collect failure data and

verification & validation activities.

Test cases were then combined into test

benches for the entire system. The design simulation was

performed using Vivado. Figure 1 illustrates the

simulation environment. Based on the generated

waveforms, the verification of the operation of the

different system modules was performed. All the faults

from this testing phase are gathered. It helps collected

and making a dataset to be applied in software reliability

growth model.

 2.2 Test Bench

A well-established test benches are required to

get high quality of testing.

2.3 White Box Testing

White-box testing is a method of testing the

application at the level of the source code. It focuses on

internal coding, flow of inputs and outputs through the

application. White-box testing is developed with the test

cases by executing methods and often used for

verification phase by the programmer or independent

test. Since this development of FPGA-based PPS has the

VHDL code, the white-box testing can be used for

verification process. In the other way, black box testing

is the functional and behavioral testing, focuses on

determining whether or not a program does what it is

supposed to do based on its functional requirements [6].

Instead of black box testing, white box testing

are used to collect failure data [7] as well as for V&V

activities. In this research, white box testing was

performed for PPS LPP bistable function using VIVIDO

simulator and Aldec HDL Program. Figure 2 show a

simulation of white box testing using Aldec HDL

program.

This white box testing is only focus on internal

behavior from input and output. Simulation on Vivado

and Aldec are behavioral simulation. Syntesis, place &

route for actual implementation of FPGA is not covered

in this thesis.

2.4 Coverage Test

Code coverage is a technique that allows

engineers to collect the statistics on the execution of

each line of HDL code, and evaluate the quality of their

test. Code coverage can be roughly divided into

statement coverage and branch coverage. Statement

coverage provides information on which statements

inside the VHDL or Verilog code were executed during

simulation and how many times. Branch coverage

examines the execution of conditional statements. It

provides the data on which branches were executed

during the simulation, how many times each branch was

executed, and how many times the branch condition

evaluated to true or false [8].

Code coverage and functional coverage are

extensively used during validation to evaluate the

effectiveness of testing. Ideally, designs must reach

100% statement, branch and functional coverage,

however exceptions are made if it is known that a given

coverage point is unreachable or not important.

Figure 3 Coverage testing result

PPS LPPT VHDL test cases are generated to

meet the 100% code coverage. ALDEC software tool is

used to perform the code coverage test. Figure 3 shows

coverage testing result.

3. Software Reliability Tools

The Several software reliability tools are available to

apply one or more of the software reliability model to a

development effort and to determine the applicability of

a particular model to a set of failure data. A major issue

in modeling software reliability lies in the ease-of-use of

currently available tools.

Figure 2 White box testing of LPPT using Aldec HDL Program

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

Following tasks are handled by the SRE tools:

a) Collecting failure and test time information

b) Calculating estimates of model parameters using

information available.

c) Testing to fit a model against the collected

information.

d) Selecting a model to make predictions of

remaining faults, time to test, etc.

e) Applying the model

As a recommendation from literature review as shown in

the comparison [9] Table 1 and according to the

availability of using free version of the tool, SMERFS

tool has been selected.

Table 1. Comparison table of tools

Factors CASRE SMERFS SOFTREL MEADEP SRMP SOREL SREPT SRTPRO

Language FORTRAN FORTRAN C VC++ FORTRAN PASCAL JAVA C#

Performance

& usability

Reliability of failure rate Y Y Y Y Y Y Y Y

Total Failure Y Y Y N Y Y Y Y

Remaining failure Y Y Y N Y Y Y Y

Number of models supported 16 12 2 1 9 4 1 14

Available

models for
Estimation Prediction Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Graphics N N N Y N N Y Y

User assistance Y Y Y Y Y Y Y Y

The software reliability prediction tool is

SMERFS (Statistical Modeling and Estimation of

Reliability Functions for Software), a well-known and

widely accepted software application for evaluation of

test data for failure rate and defect discovery rate

prediction. The version of SMERFS used in this study

included a total of 15 different reliability growth models.

The input to SMERFS is a set of values consisting either

of the time between discoveries of defects or the number

of defects discovered per time period.

SMERFS then uses maximum likelihood

methods or least squares methods to estimate the

parameters used for one or more of these models

(depending on the type of input and user selected

options). Its output includes the parameter estimates,

predicted values and a measure of the goodness-of-fit

using the chi-squared distribution.

SMERFS is used to evaluate the different

models and validate the software reliability according to

the following steps: Perform Assessment/ Prediction

Analysis and Forecast Additional Test duration. There

are two types of models in SMERFS:

a) Interval data counts models

Typical interval data count models, including

Generalized Poisson model (GPO), Brooks and

Motley Poisson model (BMP), and binomial model

(BMB), GO (also called NHPP) model, and

Yamada delayed S-shaped model (YAM).

b) Failure-count models.

Typical FC models, including LV, geometric model

(GEO), Musa Basic (MB), Jelinski/Moranda (JM),

and Musa Okumoto (MO) [10].

4. Predicting Software Reliability Growth Model

For this task, SMERFS program are used.

SMERFS pull-down menus are concise and leave little

room for misunderstanding. Firstly, specify whether the

input is time-between-failure or interval data. For

interval models, failure counts for every interval, even

those without failures, must be provided in a text file

with care not to have a blank line at the end of the file.

The models can be selected and executed but better to

let SMERFS do the selections with accuracy analyses

for the models. If the data are grossly inappropriate for a

model, the tool will informs.

The following models are abbreviated in SMERFS

Program

BMB : Brook and Motley’s Binomial

BMP : Brook and Motley’s Poisson

GP-(1-3) : Generalized Poisson (Treatment 1-3)

NHP : Non-homogeneous Poisson

S-T(1-3) : Schneidewind (Treatment 1-3)

YAM : Yamada S-shaped

The data collected during 19 times execution of

testing. When considering the whole dataset, the Table 2

shows the data gathered in format count of failure by

interval. Failure data obtained during development phase.

From several testing, data was chosen for 19 execution

times with 33 failures.

Table 2 PPS LPPT Failure Dataset

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

From dataset given above, SMERFS program

performs prediction for software reliability growth with

accuracy analyses. After execution, Figure 4 shows the

graph from all the model executed. The green nodes

indicates the observed faults, and the graphs with

different color indicates prediction of the models.

Figure 4 Failure Predicted Data plot from SMERFS

program

Figure 5 Summary for execution of dataset

Figure 5 shows the summary for execution of

dataset. It gives statistics of the data, accuracy rank,

total number of faults (TNOF), total number of faults

remaining (TNOFR), and chi squares are also included.

Based on execution result, almost all model are executed

except Generalized Poisson-3 (GP-3). It marked by red

color that shown in Figure 5, means the model are not

executed by reason of model are not suit for the dataset.

For Schneidewind Treatment 2 (S-T2) and 3 (S-T3)

model are marked by grey color, means the dataset are

not applicable for the model.

5. Conclusion

This paper presents an approach for assessing a

reliability measurement of safety critical software FPGA-

based for plant protection system. The quality of model

of the software reliability model also presented based on

several test in verification and validation activities of

FPGA-based system. The approach require numerous

testing and management engineering before beginning of

testing. Evaluating the model of software reliability

growth is important to select the best model are fit the

observed fault trends. After model are selected,

reliability estimation can be performed to reduce the

number of iteration in fixing the failure during

development and reduces the likelihood of design errors

because it allows tests quality to be increased in respect

to an objective measurement.

Acknowledgements

This work was supported by the 2018 Research

fund of KEPCO International Nuclear Graduate School

(KINGS), Republic of Korea.

REFERENCES

[1] Ma Z., Yoshikawa H., and Yang M., 2017, “The Reliability

Model for the FPGA-based Instrument and Control System

Using Colored Petri Net”, Proceedings of 25th International

Conference on Nuclear Engineering ICONE25, Shanghai,

China July, 2017

[2] H. G. Kang and T. Sung, “An Analysis of Safety-Critical

Digital Systems for Risk-Informed Design,” Reliability

Engineering and System Safety, Vol. 78, No. 3, 2002.

[3] U.S. Nuclear Regulatory Commission, "Software

Reliability and Safety in Nuclear Reactor Protection Systems,"

U.S. Nuclear Regulatory Commission, Washington, DC,

NUREG/CR-6101, June 1993. [Online].

https://www.nrc.gov/reading-rm/doc-

collections/nuregs/contract/cr6101/cr6101.pdf

[4] “IEEE Recommended Practice on Software Reliability,”

IEEE Std 1633, 2008.

[5] C. Kaner, “What is a good test case,” Relation, vol. 10, no.

1.100, p. 5569, 2003.

[6] Williams, L., (2008). “A (partial) introduction to software

engineering practices and methods”, vol. 2009

[7] K. K. Mohan, ‘’ Integration of Black-Box and White-Box

Modeling Approaches For Software Reliability Estimation”

International Journal of Reliability, Quality and Safety

Engineering Vol. 17, No. 3 pp. 261–273, 2010

[8] ALDEC, Collecting Code Coverage in Active-HDL,

August, 2018

[9] Manohar Singh “Software Reliability Testing Tools: An

Overview and Comparison” International Journal of

Engineering And Computer Science Vol. 5 Issue 11, Page No.

18886-18891, Nov. 2016.

[10] Dolores R Wallace “Practical software reliability

modelling”, Proceedings 26th Annual NASA Goddard

Software Engineering Workshop, USA, Nov 2001

