
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 23-24, 2019 

 

 
The generation of failure surface for reliability assessment of passive safety systems  

using deep learning technology 

 
Hyeonmin Kim, Jaehyun Cho, Jae Young Yoon , Jinkyun Park 

Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejon, Republic of Korea 
*Corresponding author: jyyoon@kaeri.re.kr 

 

1. Introduction 

 
There have been a lot of researches to assess the 

reliability of passive safety systems (PSSs) [1-3]. 

Reliability evaluation of passive safety system (REPAS) 

and reliability methods for passive safety functions 

(RMPS), which are based on mechanistic phenomena, 

were developed in 2001 and 2002 respectively as 

classical methods [1, 2]. In order to improve one of 

inherent disadvantages that is there are large 

uncertainties in those methods, assessment of passive 

system reliability (APSRA) was developed [3]. In 

APSRA, the vulnerability of PSSs was estimated by 

using a failure surface which is useful to decide whether 

the system is fail or success. Although failure surface is 

a very useful tool, it was generated by using only three 

variables according to APSRA, which makes additional 

uncertainties. If failure surface is produced by using 

more variables, APSRA needs enormous amount of run 

time of thermal-hydraulic (TH) analysis code. The 

proposed approach in this study, which is based on 

APSRA, is a generation of failure surface based on deep 

learning technology, so that it could solve the limitation 

of APSRA. Therefore, this paper focus on the 

generation of failure surface based on deep learning. In 

here, the passive decay heat removal system (PDHRS) 

of prototype generation IV sodium cooled fast reactor 

(PGSFR) is selected as a case study. The section 2 

shows the results of TH analysis code to obtain the 

effective variables which affects the performance of 

passive safety systems. The section 3 shows a 

generation of failure surface by using effective variables 

based on deep learning. 

 

 

2. Thermal-hydraulic analysis results 

 

To obtain the failure surface of the target system, 

estimations of TH behavior of target system are required. 

The target system is PDHRS of PGSFR. PGSFR is a 

pool type sodium-cooled fast reactor, is being designed 

by Korea Atomic Energy Research Institute (KAERI) 

[4].  PGSFR has two PDHRS to remove decay heat 

when heat removal by secondary side is not available. 

Among the design basis accident (DBA) of PGSFR, 

unprotected loss of heat sink (ULOHS) was selected 

because PDHRS plays an important role in the heat 

removal during an accident. The ULOHS is an accident 

where heat removal through a steam generator fails, and 

the reactor protection system fails to shutdown the 

reactor. Failure to remove heat through the steam 

generator can cause heat from the core to be trapped in 

the primary system, resulting in severe core damage, an 

in extreme cases, there is possibility that radioactive 

materials could leak to the outside [5]. 

TH behavior of PDHRS of PGSFR was analyzed by 

MARS-LMR (Multi Analysis Reactor Safety – Liquid 

Metal Cooled Reactor) code in which liquid metal 

properties were newly added to the MARS code. 

Pressure drop correlations for wire-wrapped SFR core 

geometry, heat transfer correlations for liquid metal, and 

reactivity feedback models for core radial and axial 

expansion reactivity feedback were adopted into 

MARS-LMR [6].  

A number of variables affect TH simulation results. 

Phenomena identification and ranking table (PIRT) is to 

identify the relative importance of systems, components, 

processes, and phenomena for driving the plant 

response. KAERI developed model identification and 

ranking table (MIRT) of the MARS-LMR using 

developed PIRT [7]. The 19 uncertain variables (V1-

V19) were re-developed considering the characteristics 

of ULOHS accident as shown in Table I. 

 
Table I: 19 uncertain variables for ULOHS 

Pearson PCC Rank

V1 Fuel conductivity Normal ± 0.58 W/m?K 0.063 -0.30 7

V2 Convection Normal ± 20 % -0.264 0.08 13

Coolant density effect V3 Sodium density reactivity Normal ± 40.9 % -0.082 -0.69 5

Core radial expansion V4 Reactivity coefficient Normal ± 44.0 % -0.500 -0.97 2

Axial expansion of fuel and cladding V5 Reactivity coefficient Normal ± 42.8 % -0.354 -0.92 3

Doppler reactivity feedback V6 Doppler reactivity Normal ± 41.0 % -0.182 -0.74 4

Inter assembly heat transfer V7 HT-9 conduction Uniform ± 10 % 0.071 0.06 15

Core pressure drop V8 Friction model Normal ± 30 % 0.080 0.67 6

Pump coastdown V9 Coastdown curve Uniform ± 10 % 0.054 -0.01 18

Natural convection V10 Core inlet form loss Log-uniform 0.5 - 2.0 -0.703 -0.98 1

V11 Heat capacity Uniform ± 10 % 0.095 -0.14 10

V12 Convection Normal ± 20 % -0.101 -0.24 8

Air heat transfer V13 Air temperature Normal ± 25 % 0.015 0.07 14

Air Natural Circulation V14 Form Loss Uniform 0.5 - 1.5 0.054 0.02 17

Sodium Natural Circulation V15 Form Loss Uniform 0.5 - 1.5 0.019 0.02 16

DHX shell side heat transfer V16 Convection Normal -0.2 ~ +0.2 0.022 -0.01 19

DHX tube side heat transfer V17 Convection Normal -0.2 ~ +0.2 -0.203 0.08 12

AHX shell side heat transfer V18 Convection Normal -0.2 ~ +0.2 0.168 -0.17 9

AHX tube side heat transfer V19 Convection Normal -0.2 ~ +0.2 0.003 0.09 11

DHRS

Correlation Coefficient
System Phenomena Vi Related model Distribution function Uncertainty band

Reactor core

Fuel rod heat transfer

PHTS

Internal structure heat transfer

 
 

With reasonable range of value of the 19 variables 

from obtained PIRT, input sampling and multiple TH 

simulations were performed utilizing MOSAIQUE 

CODE [8]. Multiple TH simulations were conducted on 

the 133 cases with 6-days CPU time using 32 computer 

processors in parallel. Commercial PCs (Intel Xeon 

CPU 3GHz, Windows 7) were used. Fig. 1 shows the 

PCT transients results for ULOHS.  
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Fig. 1. PCT transients for ULOHS (133 samplings) 

 

3. Generation of failure surface 

 

There are artificial intelligence (AI) among main 

technology in 4th industrial revolution. Recently, 

comparing past AI technology, the AI have 

breakthrough by virtue of big-data, increasing 

computing power, developing algorithm. Among these, 

the developing algorithm means deep learning. The 

deep learning is one of the artificial neural network 

(ANN) which is the large neural network having large 

hidden layers. The characteristic of deep learning is able 

to calculate large amount data during fast time than 

existing method. Therefore, it is able to generate failure 

surface considering all variables which effects in 

contrast with existing method that is considering 

dominant variables, rapidly.  

To generate failure surface of passive safety systems, 

correlation analysis was performed for 19 variables 

which effects reliability of passive safety systems using 

Pearson’s correlation. Figure 2 shows the Pearson’s 

correlation coefficients for 19 uncertain variables. The 

formula of Pearson’s correlation is as below: 
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where, cov is the covariance, 
X is the standard 

deviation of X, 
Y is the standard deviation of Y.  

 

 
Fig. 2. Pearson’s correlation coefficients for 19 uncertain 

variables 

The two main variables are core radial reactivity 

coefficient (v4) and core inlet form loss coefficient 

(v10). In this paper, failure surface was generated using 

deep neural network (DNN) which has 3 hidden layers. 

The input data was normalized by min-max-scaler. The 

number of node of each hidden layer is 300, 200, and 

100. The table 1 indicates hyper parameter of developed 

DNN. In addition, the cost function used mean squared 

error as equation 2. 

 
Table I: Hyper parameter 

Activation function Hyperbolic tangent 

Optimizer (epsilon) Adam (0.1) 

Learning rate 0.001 
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where, y is true value, ŷ is predicted value, n is 

sample size. 

The figure 3 shows failure surface using developed 

model. To visualize, the main dominant variables (v4 

and v10) are selected as axis. The R2 score was used to 

estimate good of fitness and R2 score is 0.9592. 

 

 
Fig. 3. Failure surface of passive safety system 

 

4. Conclusions 

 

The failure surface of passive decay heat removal 

system, which is possible to decide whether it is safe or 

not, was generated by using deep learning in order to 

reduce the uncertainties and run time of thermal-

hydraulic analysis code. The passive decay heat removal 

system of prototype generation IV sodium cooled fast 

reactor was selected as a target system, and its behavior 

in the unprotected loss of heat sink accident was 

analyzed by MARS-LMR (Multi Analysis Reactor 

Safety – Liquid Metal Cooled Reactor) code. The 19 

variables was obtained from model identification and 

ranking table which was provided from results of 

MARS-LMR code. The 19 variables were inputs of 

deep neural network, and 3 hidden layers were used 

with 300, 200 and 100 nodes respectively. As a results, 

the failure surface was successfully generated with a R2 

score of 0.9592. 
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