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1. Introduction 

 
It is obvious that proper decisions are essential for 

safer and more efficient operations of any industrial 
systems. Importance of making proper decisions is more 
emphasized if the system is safety-critical system such 
as nuclear power plant (NPP) or the system is under 
harsh conditions, since improper decisions may result in 
catastrophic loss of capital or high number of casualties. 

Decisions in NPPs are mostly based on procedures 
and signals received from extensive amount of 
instrumentation systems. Therefore, faulty signals work 
as major impediments to making the proper decisions. 
According to the OPIS (Operational Performance 
Information System) provided by KINS (Korea Institute 
of Nuclear Safety), among total 738 nuclear incidents in 
Korea between 1978 and 2018, root causes of 215 
(29.1%) incidents were instrumental problems [1]. 
Although not every instrumental problems are directly 
related to improper decision making, previous statistics 
support that the securing reliable instrumentation signals 
would significantly enhances the safety level of NPPs.  

Accordingly, there have been many studies for 
enhancing reliabilities of instrumentation systems. 
Especially, with rapid advances on machine learning 
techniques, studies on detection and calibration of 
instrumentation errors, reconstruction of faulty signal 
from other signals, and prediction of unmeasured signal 
from other signals based on these techniques were 
actively conducted.  

However, there is a lack of studies that dealing with 
multiple instrumentation system failure in NPPs [2, 3], 
although its significance was identified during 
Fukushima accident [4] and specified in NUREG-0800 
[5]. Even more less studies were dealt with 
reconstruction of multiple missing signals under 
emergency situations, although multiple instrumentation 
system failure is much more likely to happen under 
harsh conditions. It may due to the difficulty of dealing 
with changeable correlations between signals 
corresponding to various plant conditions (e.g. accident 
type, location, severity, etc.) based on conventional 
approaches. 

In this study, a signal reconstruction method which 
can reconstruct multiple missing signals regardless of 
prior knowledge on plant conditions was developed 
based on generative adversarial network (GAN), which 
has been widely applied to many fields while relatively 
unfamiliar in nuclear field.    

In section 2, general concepts of GAN and proposed 
methods for signal reconstruction are briefly explained, 
and in section 3, related experiments and their results 
are described. Section 4 is concluding this paper with 
summary, current limitations, and future expectations on 
applications. 

 
2. Methods 

 
In this section, general concepts of GAN and 

proposed GAN-based signal reconstruction methods are 
briefly explained. 

 
2.1 Background: Generative Adversarial Network 

 
Generative adversarial network (GAN), which was 

recently introduced by I. Goodfellow et al. [6] is one of 
the generative models. GAN is a composite word of 
generative model, adversarial learning, and neural 
network. 

GAN consists of two or more sub-networks that 
trained to achieve opposite goals. In most basic form of 
GAN (i.e. Vanilla-GAN), it includes two sub-networks, 
namely generator network and discriminator network (or 
simply generator and discriminator, respectively). 
Generator receives latent random vectors as inputs, and 
returns generated data as output, which has same form 
with real-world data. Discriminator receives both real-
world data and generated data as inputs, and returns the 
values between 0 and 1, which implies the classification 
results of input data as real-world data or generated 
‘fake’ data. 

These two networks are trained toward opposite 
direction; generator is trained to generate more realistic 
data and to deceive discriminator, while discriminator is 
trained to correctly classify real data and generated data. 
After the proper training of GAN, generator becomes 
able to generate realistic samples (but not always same 
to real data) from given latent random vectors. In other 
word, generator is trained for proper mapping of latent 
random vector toward realistic data.  

Unlike another widely applied generative model, 
variational auto-encoder (VAE) [7], GAN is implicit 
statistical model which does not requires pre-defined 
probability distribution model. This characteristic is 
regarded as double-edged sword, since it enables GAN 
to precisely mimic any kinds of data distributions 
theoretically while it also makes training process longer 
and to be more difficult. Representative challenges that 
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emerge during training sequences of GAN can be 
summarized as follows. 

- Premature convergence: GAN is not properly 
trained if generator or discriminator becomes far 
superior to the other.   

- Loss oscillation: no matter how long GAN is trained, 
it may oscillates rather than converges. 

- Mode collapsing: GAN may trained to model not 
the whole but only a portion of data. 

GAN and other generative models are also suffered 
from a lack of quantitative performance metrics on 
‘level of reality of generated data’. 

Although many studies have been conducted to cope 
with these challenges and corresponding fundamental 
solutions are not discovered yet, GAN still shows good 
performance in modeling complex data distributions in 
many applications. Especially, in image-related fields, 
GAN is widely applied due to its ability to generate 
clear and vivid images compare to other generative 
models. 

 
2.2 Methods of GAN-based Signal Reconstruction 
 

Fundamentally, proposed methods of signal 
reconstruction is similar to the process of reconstruction 
of damaged images [8]. However, since the 
characteristics of image data (static, high spatial 
correlations) are much different to that of 
instrumentation signal data (time-series, real-valued, 
low spatial correlations), its application strategies are 
different. Particularly, baseline GAN architecture, loss 
function, and performance metrics are major changes. 

Development of signal reconstruction model consists 
of three steps. First step is pre-training step, which for 
making GAN model to generate realistic signal sets 
under various plant conditions. Second step is iteration 
step, which to find optimal latent vector for 
reconstruction of damaged signal set by minimizing pre-
defined loss function. Final step is reconstruction step, 
which to reconstruct damaged signal set by replacing 
damaged parts of signal set with same parts of generated 
signals. 

 
 

Fig. 1. Schematic of iterative process for finding optimal 
latent vector 

 

Aforementioned pre-defined loss function for finding 
optimal latent vector consists of three kinds of loss 
elements. First loss element is homogeneity loss, which 
represents the level of difference between ‘undamaged 
parts of damaged signal set’ and ‘corresponding parts of 
generated signal set’. Second loss element is 
classification loss, which represents the level of 
difference between classifier network’s outputs 
(estimated labels) from damaged signal set and 
generated signal set. Third loss element is practicality 
loss, which represents how realistic the generated signal 
set is. Total loss is calculated by summing up these three 
loss elements with weighting factors λ1 and λ2, and 
optimal latent vector for reconstruction can be found by 
searching latent vector which minimizes total loss. 
Following equations are mathematical expressions of 
three kinds of loss elements and total loss.   

 
 1( | , ) || ( ( ) ) ||HL z i M M G z i= −  (1) 

1( | ) || ( ( )) ( ) ||CL z i C G z C i= −  (2) 

 ( ) log(1 ( ( )))PL z D G z= −  (3) 

 1 2( | , ) ( | ) ( )total H C PL L z i M L z i L zλ λ= + +  (4) 
 

Where i is input damaged signal set, G is generator 
network, D is discriminator network, ⊙ is element-wise 
matrix multiplication operator, and M is the binary 
mask matrix which distinguishes damaged and 
undamaged parts of damaged signal set with binary 
values 0 and 1, respectively. 

If found optimal latent vector for reconstruction is 
denoted as ẑ , corresponding reconstruction process can 
be mathematically expressed as follows. 
 
 ˆ arg min{ }totalz

z L=  (5) 

 1ˆ ˆ|| ( ) ((1 ) ( )) ||x M i M G z= + −   (6) 
 

Where x̂  is reconstructed signal set. 
 

3. Experiments 
 

This section describes about experiments for 
validation of proposed signal reconstruction methods. 
Experiments were conducted in three stages; data 
acquisition and pre-processing stage, GAN model pre-
training stage, and signal reconstruction stage. 

 
3.1 Data Acquisition and Pre-processing 

 
Since data on NPP emergency situation is extremely 

limited, experiments were conducted based on simulated 
data acquired from compact nuclear simulator 
(reference plant: Westinghouse 3-loop 900MW 
pressurized water reactor). 
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Four kinds of scenarios, including cold leg LOCA 
(loss of coolant accident), hot leg LOCA, SGTR (steam 
generator tube rupture), and MSLB (main steam line 
break) with varied break sizes (10~100cm2 with 1cm2 

intervals, and for 10 times MSLB) were simulated. For 
instrumentation signals, following 31 kinds of signals 
that are important for making decisions were selected 
and obtained. 

Table I: Obtained signals and from the simulation 

Obtained signals Units 
CTMT sump level 
CTMT radiation 
CTMT relative humidity 
CTMT temp. 
CTMT pressure 
Core outlet temp. 
Hot leg temp. (loop 1, 2, 3) 
Cold leg temp. (loop 1, 2, 3) 
Delta temp. (loop 1, 2, 3) 
PRT temp. 
H2 concentration 
RV water level 
PRZ temp. 
PRZ level 
PRZ pressure (wide) 
S/G pressure (loop 1, 2, 3) 
S/G narrow range level (loop 1, 2, 3) 
Feedwater flow rate (loop 1, 2, 3) 

m 
mrem/hr 
% 
oC 
kg/cm2 

oC 
oC 
oC 
oC 
oC 
% 
% 
oC 
% 
kg/cm2 

kg/cm2 

% 
ton/hr 

 
For effective training of GAN model, following pre-

processing sequences were applied.  
- Simulated data was processed to have same time 

length (300 seconds of plant time). 
- Simulated data was processed to have same time 

intervals (1 second) through interpolation. 
- Unit data which has 30 seconds time length was 

generated.     
- Measurement values were normalized to have 

values between -1 and 1.   
 
3.2 GAN Model Pre-training 
 

As baseline GAN architecture, RGAN (recurrent 
GAN) [9] which uses LSTM (long short-term memory) 
networks [10] was selected to effectively consider time-
series data. Additionally, to consider the information on 
labels (accident type, location, severity, etc.) and to 
stabilize training sequences, concepts of InfoGAN [11] 
and MGGAN [12] were adopted. As a result, final GAN 
architecture includes five neural networks as its 
components, which are generator (G), discriminator (D), 
classifier (C), encoder (E), and encoder-discriminator 
(DE).  

 

 
Fig. 2. Schematic of overall GAN model 
 

Pre-training of GAN model starts from the training of 
guidance networks (encoder and encoder-discriminator), 
which were added from the concepts of MGGAN. 
Guidance networks are fixed after the sufficient training, 
and training of other parts of entire GAN model is 
initiated. As training data, about 50% of data was 
utilized. 

To check whether the pre-trained GAN model is able 
to generate realistic signal sets or not, generative error 
performance metric was defined, which is a minimum 
deviation among deviations between generated signal 
set and entire simulated data. Also, to check whether 
mode collapse is occurred or not, indices of most 
similar training data were obtained. 

Aforementioned pre-training sequences were 
repeatedly conducted with various hyper-parameter sets, 
by adjusting number of layers and nodes, LSTM 
sequence lengths, learning rates, latent vector size, and 
batch size. Adam optimizer [13] was used for 
optimization. GAN model which shown best 
performance among them was applied for signal 
reconstruction. 

 

 
Fig. 3. Discriminator, generator, and classifier losses during 
training 

 
3.3 Signal Reconstruction 

 
To confirm that the pre-trained GAN model is able to 

reconstruct multiple missing signals, simulated data was 
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intentionally damaged and proposed signal 
reconstruction methods were applied. In detail, among 
entire simulated data, randomly 1,000 data was selected 
and randomly selected kinds of signals were deleted.    

Regarding iterative process for searching optimal 
latent vector for reconstruction, 750 iterations for each 
damaged signal set was applied. Among iterations, 
latent vector which shown minimum total loss was 
selected for further reconstruction process.  

For the quantitative reconstruction performance 
estimation, mean reconstruction error, maximum 
reconstruction error, and standard deviation of 
reconstruction errors were considered.  

As results, when 5 out of 31 signals were deleted, 
mean and maximum reconstruction errors were 4.51% 
and 21.71% respectively, and when 10 out of 31 signals 
were deleted, they were 5.37% and 34.67%. Detailed 
results are described in Table II. 

 
Table II: Signal reconstruction performances according to 

the number of missing signals  

# of 
missing signals 

(out of 31) 

Mean 
Error 
(%) 

Max. 
Error 
(%) 

Error 
standard 
deviation 

3 4.51 21.71 4.85 
5 5.19 37.62 6.01 
7 4.96 34.07 5.08 

10 5.37 34.67 5.66 
15 5.80 39.01 5.94 

 
4. Conclusions 

 
In this study, GAN-based signal reconstruction 

method for aiding proper decision-making under NPP 
emergency situations was proposed. For development, 
GAN architecture was established through merging 
concepts from RGAN, InfoGAN, and MGGAN. Also, 
loss function for iterative process and generative error 
performance metric for the evaluation of pre-trained 
GAN model were defined. 

Through the experiments, it was shown that the 
proposed method is able to reconstruct multiple missing 
signals under emergency situations with acceptable 
error, without prior knowledge on plant condition.    

Since the signal reconstruction performance is 
heavily depends on the quality of pre-trained GAN 
model, more precise optimization of underlying GAN 
model should be continuously conducted for further 
reduction of reconstruction error. Moreover, since 
proposed model can be applied only when the normal 
and faulty signals are accurately separated, study on 
detection of faulty signals under various emergency 
situations with acceptable error should be conducted.  

It is expected that operators would become able to 
acquire sufficient amount of information for proper 
decision-making although there exists multiple missing 
signals, when fully developed system is applied. 

Developed system can be also applied with other 
support systems to enhance their performances and 
broaden their applicabilities, especially for support 
systems that heavily affected by input signals’ 
reliabilities.   
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