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1. Introduction 

 
Many studies that suggested operator support systems 

for nuclear power plants (NPPs) have been being 

carried out. Several operator support systems were 

designed for effective actions and mitigation in an 

abnormal state or an accident circumstance. Among 

them, the systems showed its capability for tasks such as 

fault detection, diagnosis of an abnormal state or an 

accident, and prediction of safety-related factors in 

NPPs by deploying artificial intelligence algorithms. 

Furthermore, with the introduction of machine learning 

methods from conventional support vector machines [1], 

fuzzy neural networks [2] to state-of-the-art deep 

learning methods with feedforward deep neural network 

(DNN) [3] or recurrent neural network (RNN) [4] 

architectures, many methods were able to be applied to 

various NPP factors, and therefore their performances 

were shown and being advanced. 

In an effort to predict a safety-critical NPP factor, 

long-short term memory (LSTM) neural network [5], of 

which structure is based on RNNs’, was used to predict 

reactor vessel (RV) water level under postulated severe 

accident circumstances of the NPPs. The LSTM was 

utilized in the study due to the fact that it is well known 

for its better stability for time series prediction in large-

scale networks, and less vulnerable to vanishing 

gradient problem than typical RNNs. 

For application to the LSTM and establishment of a 

prediction model, modular accident analysis program 

(MAAP) code [6] was used to obtain simulated data. 

The data were comprised of time-dependent values of 

variables gained by simulating the severe accident 

circumstances originated from postulated loss-of-

coolant accidents (LOCAs) and steam generator tube 

rupture (SGTR). 

In this paper, prediction performance of an 

established LSTM model is presented when limited 

instrumentation signals from the aforementioned 

simulated data were applied. In addition, prediction 

performance of two deep learning methods for a NPP 

factor can be assessed by comparing the proposed 

LSTM model with the DNN model designed in previous 

study [7]. 

 

2. Deep Learning Methods 

 

Effectiveness of each deep learning method differs 

depending on its inherent characteristics although most 

of the deep learning methods are based on artificial 

neural network (ANN) structure inspired by inter-

connection between neuronal cells in the human brain. 

The RNNs, basic structure of the LSTM, are dynamic 

networks with RNN cells. 

 

2.1 Recurrent Neural Networks 

 

In RNNs, the reason why the word ‘recurrent’ is used 

is due to the loop that each RNN cell perform same 

process and its current outputs are affected by results 

previously calculated as described in Fig. 1. Since RNN 

cells share its values calculated at every time step, thus, 

RNNs or RNN-based networks are considered as more 

proper methods to process time series data, that is, 

sequential data. 

In Fig. 1, hidden state, th , is computed using inputs 

tx , hidden state at previous time step 1th  , and 

nonlinear activation function (e.g. hyperbolic tangent) 

expressed as Eq. (1). Once the hidden state, th , arrives 

in the output layer by forward propagation, an overall 

output of the RNNs, ˆ
ty , is computed using Eq. (2). 

 

 1t xh t hh t hh f W x W h b    (1) 

 

where xhW  is weights transferred from input layer to 

hidden layer and hhW  is weights shared from previous to 

next hidden cells. 

 

ˆ
t hy ty W h  (2) 

 

where 
hyW  is weights from hidden layer to output layer. 
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Fig. 1. Simple Vanilla Recurrent Neural Networks [8] 

 

To optimize the deep learning methods, gradient 

descent and backpropagation algorithms are generally 

used. These are utilized to update weights and overall 
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output by propagating errors backward in an input layer 

direction until a point on a curve, where loss computed 

using error between target and predicted values is 

minimized, is finally found. Unlike a typical ANN-

based method (e.g. DNNs), however, backpropagation 

through time (BPTT) is utilized on behalf of existing 

backpropagation algorithm. This is because each RNN 

cell depends on gradients of the hidden state at previous 

time step as well as current time step. 

Despite information sharing which is an advantage of 

the RNNs, the RNNs can be vulnerable to vanishing 

gradient problem in multiple cells due to its repetitive 

multiplying process. 

 

2.2 Long-Short Term Memory Neural Networks 
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Fig. 2. Long-short Term Memory and its Memory Cell [9] 

 

To deal with the vanishing gradient in the RNN 

structure, one of the variations, LSTM, has been 

presented. The LSTM used in the study is the same as 

the entire RNN structure and weight flow while 

architecture of each cell differs from each other. The 

main characteristic of the LSTM is the usage of 

‘memory cell’ containing cell state and three types of 

gates (forget, input, and output) as shown in Fig. 2. 

The cell state performing like a conveyer belt is 

determined by cell state at previous time step 1tc  , and 

the forget and input gates expressed as Eqs. (3) and (4), 

and propagated to the next cells. Three types of the 

gates use the sigmoid function to determine whether a 

cell saves the information or not. If an output of the 

sigmoid function is 0, the information is forgotten. 

 

 , , 1 ,t xh f t hh f t h ff W x W h b     (3) 

 

 , , 1 ,t xh i t hh i t h ii W x W h b     (4) 

 

The hidden state at current time step is calculated 

using the computed cell state, the nonlinear activation 

function, and the output gate of Eq. (5), and then 

transferred into the next memory cells. 

 

 , , 1 ,t xh o t hh o t h oo W x W h b     (5) 

 

Although computing time for the LSTM tends to 

increase on account of complex architecture of the cell, 

the LSTM can solve long term dependency problem 

(refer to Fig. 3). 
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Fig. 3. Long Term Dependency Problem [9] 

 

3. Applied Data for Training LSTM Model 

 

3.1 Simulation Data for Assumed Accidents  

 

To obtain the simulated data, the MAAP code was 

utilized to simulate assumed LOCAs in hot-leg and 

cold-leg, and SGTR. Each postulated accident was 

under the circumstance that high-pressure and low-

pressure safety injection did not function normally. In 

addition, its break (or rupture) sizes were variously 

divided from small to double-ended guillotine break. 

Among all the simulated data on the postulated 

accidents, the number of accident simulations applied to 

the LSTM model is 600, and these were separated 200 

for each accident location, respectively. Specifically, in 

case of LOCAs in hot-leg and cold-leg, 170 were for 

larger break sizes and 30 were for smaller sizes, 

respectively. For SGTR data, 100 simulated data were 

for smaller and larger rupture sizes, respectively. 

 

3.2 Applied Simulated Signal Values to LSTM 

 

Trend for the desired factors of the NPP systems can 

be outputted when the assumed NPP accidents were 

simulated using the MAAP code. The trend on the 

variables were expressed as time-integrated values after 

the reactor trip indicated as Eq. (6). The applied data 

simulated according to every LOCA break or SGTR 

sizes contain the time-integrated values for various 

signals from elapsed time after the reactor trip to 3 days. 

 

( ) ,    1,  2,  ,  
s

s

t t

j j
t

x g t dt j m


   (6) 

 

To predict the RV water level, only a few types of the 

simulated signals were applied to the LSTM owing to 

the assumption that acquiring instrumentation signals 

was limited. Elapsed time after the reactor trip and 

containment pressure from the MAAP code, and the 
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estimated LOCA break size (or SGTR size) were 

applied, which are the same as the previous study [7]. 

Even though LOCA break or SGTR size cannot be 

accurately recognized in actual accident circumstance, 

these factors have to be determined. Since low 

estimation errors for the break sizes were shown in 

previous studies for LOCA diagnosis [10]-[12], the 

estimated LOCA size was considered as an applicable 

input for the LSTM in this study. 

In each accident case according to break locations 

and break sizes, approximately 95% simulated signal 

values were used as ‘training data’ and the others were 

‘test data’ to verify the trained LSTM model. 

 

4. Prediction Results of LSTM Model 

 

4.1 Utilized LSTM Model for RV Water Level 

Prediction 

 

Prediction performance of the established LSTM 

model was presented using root mean square error 

(RMSE) and it was compared with result of the DNN 

model of the previous study. Several hyper-parameters 

making the LSTM model for RV water level prediction 

optimal were used as follows: 

 

• No. of stacked LSTM layers: 7 

• Hidden sizes: 8 

• Sequence length: 12 

• Activation function: softsign 

• Optimization function: Adamoptimizer 

• Learning rate: 0.002 

 

4.2 Performance of the LSTM Model 

 

Table I: Prediction Performance of the LSTM Model 

Break 

size 

Accident 

location 

Training data Test data 

RMSE (m) RMSE (m) 

Small 

Hot-leg 

LOCA 
0.07 0.11 

Cold-leg 

LOCA 
0.10 0.07 

SGTR 0.07 0.09 

Large 

Hot-leg 

LOCA 
0.08 0.08 

Cold-leg 

LOCA 
0.11 0.10 

SGTR 0.10 0.12 

 

Among the whole obtained data, the simulated data 

on specific break size cases were selected as the test 

data set. In case of hot-leg and cold-leg LOCAs, 

simulated signal values on less cases were considered as 

the test data since the number of the simulated data are 

relatively smaller. On the other hand, the larger number 

of break size cases were used for large break LOCAs 

and SGTR. 

Table I shows the prediction results for each data set 

using the established LSTM model. Figs. 4-6 also 

indicate the performance of the proposed model for the 

test data in LOCA and SGTR with small break size 

cases. In Figs. 4-6, black circles (target) are well tracked 

by red-colored crosses (predicted) except for several 

missed points. 
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Fig. 4. Prediction of RV Water Level by LSTM Model 

(small hot-leg LOCA) 
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Fig. 5. Prediction of RV Water Level by LSTM Model 

(small cold-leg LOCA) 
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Fig. 6. Prediction of RV Water Level by LSTM Model 

(small SGTR) 

 

4.2 Comparison of Prediction Results with DNN Model 

 

The prediction results of the LSTM and DNN models 

were compared in Table II in order to assess the 

prediction performance on the RV water level. The 

DNN model used typical ANN framework and its 

hidden layers were optimized by genetic algorithm (GA) 

[13] in the previous study. 

As described in Table II, RMSE of the DNN model is 

slightly lower than that of the LSTM model in general. 

It is considered that this is because the DNN model was 

with network structure efficiently optimized by the 

suitable optimization technique. Thus, additional study 

is needed to apply several well-known optimization 

methods in addition to the GA to the LSTM since the 

proposed LSTM model also is expected to have low 

RMSE. 

 

Table II: Comparison of Performance between LSTM and 

DNN Models 

Break 

size 

Accident 

type 

LSTM model DNN model 

RMSE 

for test data 

(m) 

RMSE  

for test data 

(m) 

Small 

Hot-leg 

LOCA 
0.11 0.11 

Cold-leg 

LOCA 
0.07 0.09 

SGTR 0.09 0.03 

Large 

Hot-leg 

LOCA 
0.08 0.04 

Cold-leg 

LOCA 
0.10 0.13 

SGTR 0.12 0.07 

 

5. Conclusions 

 

This study was carried out to predict one of the 

safety-critical variables, reactor vessel (RV) water level, 

using the long-short term memory (LSTM) model. 

Furthermore, its prediction result was compared to that 

of the deep neural network (DNN) model of the 

previous study to assess the performance of deep 

learning methods for the prediction of the nuclear power 

plant (NPP) factor. The DNN model has shown better 

accuracy for RV water level prediction than the LSTM 

model in this study. 

Generally, many efforts (e.g. selecting proper 

network structure and hyper-parameters) are necessary 

to establish an optimal deep learning model. Therefore, 

an LSTM model with enhanced prediction performance 

will be developed if appropriate parameters are found in 

additional study. 
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